Quantum Information Science


1. R.Bhandari, "On Single Qubit Quantum State Tomography",

arXiv:1407.6668 [quant-ph].


 2. R. Bhandari, "Alternate Forms of the T-Matrix in Quantum State Tomography",

 arXiv:1407.7843 [quant-ph].


3. R. Bhandari, "Quantum Error Correcting Codes and the Security Proof of the BB84 Protocol", arXiv:1409.1452 [quant-ph].


4. R. Bhandari and N.A. Peters, "On Single Qubit Quantum Process Tomography for Trace-Preserving and Nontrace-Preserving Maps", arXiv:1502.01016 [quant-ph].


5. R. Bhandari and N.A. Peters, "On the General Constraints in Single Qubit Process Tomography", published in Scientific Reports, (appeared earlier as

 arXiv:1604.08113 [quant-ph]).  




1.     R. Bhandari, “Survivable Networks: Algorithms for Diverse Routing”, Kluwer Academic Publishers (1999) – Book


2.  R. Bhandari, “Survivable Networks: Algorithms for Diverse Routing”, an invited tutorial based on the above book,  presented and published in the Proc. of the Int’l Conference on  Telecommunications, Cheju, Korea, pages 3-70, June 1999.


3.     R. Bhandari, “Shortest Pair of Physically-disjoint paths in Telecommunication Fiber Networks”, Proc. of the 6th International Network Planning Symposium, Budapest, Hungary (1994), 125-130.


Also specially selected  by the above conference International Scientific Committee, translated and published in the Hungarian scientific journal, Magyar Tzovolos, July 1996.


4.     R. Bhandari, “Optimal diverse routing in telecommunication fiber networks”, Proc. of IEEE INFOCOM, Toronto, Canada (1994), 1498-1508.


5.     R. Bhandari, “Physical Diversity versus Cost Algorithm for Networks”, Proc. of the Communications Network Modeling and Simulation Conference (The Society for Computer Simulation), San Diego, California, Jan. 14-17, 1996, Vol. 28, No.1, 258-264.


The above work was translated into Hungarian and publshed in Hungarian scientific journal,  Magyar Tvozlos, July 1997


6.     R. Bhandari, “Optimal Physically-Disjoint Paths Algorithms and Survivable Networks”,  Proc. of Second IEEE Symposium on Computer and Communications, Alexandria, Egypt, pages 433-441, July 1997.


         The above work was translated into Hungarian and published in Hungarian Scientific Journal , Magyar  Tvozlos,  March 1998.


7.     R. Bhandari , “A Model for Stream Overflows in Circuit-Switched Communication Networks”, IEICE Transactions on Communications: Special Issue on Telecommunications Network Planning and Design, Vol. E-80B, No. 2, 324-331 (1997).


(also appeared in Proc. of the Fifth International Conference on Computer Communications and Networks, Rockville, Maryland (October 16-19,  1996)).


The above work has been adopted as an international standard by the International Telecommunication Union (ITU), Geneva; it appears as a new method in ITU Recommendation E.524.


8.     R. Bhandari , “An Optimal Physically-Disjoint path Algorithm for Real-Life Telecommunication Networks”, Proc. of the 13th Int’l Conference on Computers and Their Applications”, Honolulu, Hawaii, pages 70-75, March 1998.


9.     R. Bhandari , “On Congestion Problems in Digital Cross-Connect (DCS) Transport Networks”, Proc. of the Third IEEE Symposium on Computers and Communications, Athens, Greece, pages 503-509, June 1998.


10.     R. Bhandari,, “The Sliding Shortest Path Algorithms”, Proc. of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, Paris, France, June 2009.


11. R. Bhandari, "The Improved Sliding Shortest Path Algorithms”, Congressus Numerantium 203, (2010), pp.175-192 (a refereed journal of the 41st Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Florida Atlantic University, Boca Raton, Florida, March 8-12, 2010).


12. H. Carter and R. Bhandari, "Improved Sliding Shortest path Algorithm:Performance Analysis", Congressus Numerantium 207 (2011), pp.69-81 (a referred journal of the 42nd Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Florida Atlantic University, Boca Raton, Florida, March 7-11, 2011).


13. W. Weyerman, B. Durtschi, and R. Bhandari, "Constrained Rerouting in Networks: An  Integer Programming Formulation", Congressus Numerantium 210 (2011), pp. 119-138 ( a refereed journal of the 42nd Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Florida, Atlantic University, Boca Raton, Florida, March 7-11, 2011).


14. R. Bhandari and D. Short, "A Constrained Minimum Cost s-t Cutset Problem", Congressus Numerantium 209 (2011), pp. 49-56 ( a refereed journal of the 42nd Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Florida Atlantic Unversity, Boca Raton, Florida, March 7-11, 2011). 






1.   R. Bhandari    “Scattering coefficients for a multilayered sphere: analytic  expressions and algorithms”, Appl. Opt.24,1960 (1985).


Also appeared in Selected Papers on Light Scattering, SPIE (Society of Photo-industry Engineers) Milestone Series, Vol. 951 (1988) (a reprint collection of outstanding papers from the world literature on optical and optoelectronic science, engineering and technology).


2.     R. Bhandari, “Tests of the algorithm for the calculation of scattering by a multilayered sphere”, Proc. SPIE 540.512 (1985).


3.     R. Bhandari   , “Internal and near-scattered field of a spherical particle at resonant condition: comments”, Appl. Opt. 25,2464 (1986).


4.     R. Bhandari, Specific absorption of a tiny absorbing partical embedded within a nonabsorbing particle”, Appl. Opt. 25, 3331 (1986).


5.      R. Bhandari, “Tiny core or thin shell as a perturbation in scattering by a single-layered sphere”, J. Opt. Soc. Am. A3, 319 (1986).


6.     R. Bhandari and  M. Kerker,  “Monte-Carlo analysis of the internal structure of light scattering of particles with slit-scan illumination”, J. Stat. Phys., 52.1263 (1988).




Elementary Particle Physics


1.     R. Bhandari and Y.A. Chao, “πN S11 partial-wave amplitude near the ηN production threshold”, Phys. Rev. D15,   192 (1977).


2.     R.  Bhandari and L. Wolfenstein, “Forbidden decays ψ' to ψ + η and ψ' to ψ + π0 “, Phys. Rev. D17,1852 (1978).


3.     R. Bhandari, Spin tests for charmed mesons produced in e+e-  annihilation at sqrt(s)= 4.028 GeV”, Phys. Rev. D17, 2965 (1978).


4.     R. Bhandari, R. A. Arndt, L.D. Roper, and B.J. Verwest , “The existence of dibaryons resonances in I=1 1D2  and 3F3  nucleon-nucleon scattering”, Phys. Rev. Lett. 46, 1111 (1981).


5.     R. Bhandari,  “Quasi-two-body phase space factors in the isobar model”, Phys. Rev. D25, 1261 (1982).


6.     R. Bhandari, “3F3 nucleon-nucleon partial wave as a resonance plus a  smoothly varying background”, Lett.Nuovo Cimento 34, 65(1982).


7.     R. Bhandari, “K-matrix formulism and the quasi-two body phase-space factor in the isobar model”, Lett. Nuovo Cimento 35, 443 (1982).


8.     R. Bhandari, “1D2 and 3F3  nucleon-nucleon poles in the M-matrix formalism”,  Phys. Rev. D27, 292 (1983)


9.     R. Bhandari, “The D function in a phenomenological N/D model”, Phys. Rev. 121B, 279 (1983).


10.   R.  Bhandari,  “The 1D2 and the 3F3 nucleon-nucleon partial waves within the N/D formalism”, Lett. Nuovo Cimento 38, 251 (1983)


11.   R. Bhandari, “The ωn cusp in the pion-nucleon elastic differential cross section”, Lett. Nuovo Cimento 36, 521 (1983).


12.   M.R. Arafah, R. Bhandari, and B. Ram, “Quarkonium spectra with the linear plus Coulombic potential the Bethe-Salpeter equation”, Lett. Nuovo Cimento 38,305(1983).



Special Relativity


1.  *R. Bhandari,Visual appearance of a moving vertical line”, Am. J. Phys. 38, 2100 (1970).


2.  R. Bhandari, Visual appearance of a moving vertical line revisited”,  Am. J. Phys. 46, 760 (1978).


                                Number Theory


1.  *R. Bhandari,A simple problem on the frequency of repetition of integers”, The Mathematics Student , Vol. XXXIX, No. 2, 181 (1971).


*published as an undergraduate

**includes recent arxiv papers.