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We present an integral representation of quasi-two-body phase-space factors in the iso-
bar model, which is general enough to be used in phenomenological partial-wave scatter-
ing studies of systems such as 7N, KN, NN, etc. We examine its analytic structure in de-
tail, and furthermore cast it into an analytic form. This integral representation, with its
analytic expression, is then convenient for use in analysis work.

I. INTRODUCTION

Within the framework of K and M (=K ') ma-
trix models, Bhandari et al.! recently discussed the
existence of dibaryon resonances in the 'D, and the
3F; nucleon-nucleon partial waves. They employed
a coupled-channel formalism, obtaining the
elastic-scattering amplitude from the relation

T '=4—ip, : (n

where T is a reduced-scattering-amplitude matrix
in the channels involved. The product of its ele-
ment Ty, and p,, the elastic phase-space factor,
gives the conventional elastic partial-wave ampli-
tude T,. p, and phase-space factors corresponding
to the inelastic channels comprise the diagonal ma-
trix p. Matrix 4 is the familiar K ~! or M matrix,’
and in either case is free of threshold cuts. Be-
cause of this cut-free nature of matrix 4, the T
matrix in Eq. (1) clearly derives its right-hand uni-
tarity cut structure from the p matrix.

The authors of Ref. 1 fitted the !D, and the
3F3 NN partial-wave phases of Arndt ez al.,® using
Eq. (1). These phases exist presently up to T
{laboratory kinetic energy) =800 MeV and thus
extend well beyond the pion-production threshold

]

1 T E-My+M)]

which is roughly at T; =300 MeV. Under the as-
sumption that the inelasticity in the above range of
energy is mainly due to single-pion production
which furthermore originates in the quasi-two-
body channel NA,* Eq. (1) is a 2 X2 matrix equa-
tion, connecting channels NN and NA. The inelas-
tic phase-space factor corresponding to the channel
NA, which we denote by p;, is then the only other
diagonal element of the p matrix. In Ref. 1, the
authors parametrized p, as

I, +1/2
y

pe=I(s—5.)/(s —c,)]* (2)

where s is the Mandelstam variable, equal to the
square of the center-of-mass energy E. s, is the
elastic threshold energy squared, /, is the orbital
angular momentum in the elastic channel, and ¢, is
a parameter less than s,. The numerator in p,
gives appropriate threshold behavior which in-
cludes centrifugal barrier effects. The denominator
(s —c, )I"+1/2, on the other hand, while giving a
left-hand cut at c,, provides modification of this
behavior, such that as s — «, p,—1. Unlike p,,
the inelastic phase-space factor p; must take into
account the variable mass of the A isobar. Conse-
quently, in Ref. 1, p; appeared as the following in-
tegral:

L4172

JTAM —M ¥ %dM
( r) . (3)

-}
Pi= (E—c)it12 fMT=MN+M,,
; ‘

(M+a)
My and M, are nucleon and pion masses, respec-
tively. The complex mass of A=My—iI'/2. The
factors in the numerator of the integrand represent
the square-root threshold effects associated with
the production of the A isobar with a relative orbi-
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L+2

[(M—My)?+T?/4]

Ital angular momentum of /;, and its subsequent de-
cay into N and 7 with a relative orbital angular
momentum of 1 (see Fig. 1). The factor

M —i—a)l"+2 in the denominator modifies the
aforementioned threshold effects in the M depen-
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. FIG. 1. Pion production via the isobar A in NN
scattering. /., [;, and / denote the relative orbital angu-
lar momenta for the systems NN, NA, and 7N, respec-
tively.

. L4172,
dence, in the same sense as (s —c¢,)° in the case

of p,. Its exponent /;+2 is simply the sum of the
exponents in the numerator of the integrand. The
parameter « is real and greater than —My. The
Breit-Wigner factor represents the isobar propaga-
tor of Fig. 1. The integral extends up to oo, and is
convergent. It has an imaginary part which ac-
counts for the effect of the part of the continuous
mass M, corresponding to E <M +My. Its com-
plex nature is a consequence of the general analytic
continuation procedure in which a two-body

phase-space factor is replaced by i times its abso-
lute value for energies below the corresponding

threshold. The factor (E —c¢; )Y utside the
integral controls its behavior in the E variable.
The parameter ¢; is real and kept less than
s.!2=My+My. Asin p,, this factor also gives a
left-hand cut which is at E =c; in this case.

Evidently, because of the coupling of the chan-
nels NN and NA, the effect of NA production will
be reflected in the elastic amplitude T,, through
the phase-space factor p;. It thus becomes impor-
tant to understand the analytic structure of p;.
The purpose of this paper is to extend the integral
representation to the general case in which parti-
cles 1 and 2 are considered resonating with a rela-
tive orbital angular momentum I, and to subse-
quently examine its form for analytic behavior.
We discuss the integral for this general case in Sec.
II. The integral can be easily cast into an analytic
form, which we give in Appendix A. The availa-
bility of an analytic expression such as the one in
Appendix A renders easy the phenomenological
studies of partial-wave amplitudes for systems like
the #N, KN, NN, etc. As mentioned earlier, Eq.
(3) has already been used for the study of the ener-
gy dependence of the !D, and the *F3; NN partial
waves in Ref. 1.

II. p; FOR THE GENERAL CASE, AND ITS ANALYTIC STRUCTURE

Generalizing Eq. (3) to the case in which particles 1 and 2, comprising the isobar, resonate with a relative

orbital angular momentum /, we write

pi=f(E)gPE), (4a)
_ I‘(M0+a)1i+f+1 (4b)
8 (MM
- (E—My—M)" (M — M)+ 2dM o)
(E)= fMT=M1+M2 L4741 2 2 ’
(M+a) T T [(M—My)?+T%/4]

where particle 3 is the spectator produced in con-
junction with the isobar of mass My—iI'/2. The
function f(E) controls the behavior of ®(E) away
from the threshold. For example, in Eq. (3), it has
a form which ensures that Re ®(E) approaches a
constant as E— «0. The normalization factor g is
such that in the limit T —0,

gO(E)—(E—M;—My) 72,

—

A. Branch point at E=Er=Ms+M;

To determine the analytic behavior of ®(E) in
the immediate vicinity of the three-body threshold
E;=M;+M; it is sufficient to consider only the.
square-root factors in Eq. (4c). Figure 2 shows the
corresponding cuts in the complex M plane for
E < E;. There are two sheets attached to each one
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FIG. 2. The square-root branch points E —M; and
M with their cuts for E < Ep=My-+M;. The contour
of integration in the complex M plane extends to .

of them. Each cut is present on both of the two
sheets associated with the other. When E < Er, it
is clear that ®(E) is single valued. But when E
approaches Er, the branch point at M =FE — M,
merges with the end point M =My of the contour,
suggesting that E=Er is a singularity.” Now, to
continue beyond E7, it is essential to assign a small
imaginary part € to E. If € is positive, the analytic
continuation takes place as shown in Fig. 3. The
real part of ®(E) is evidently positive. If, howev-
er, the analytic continuation is made beyond

E =Ej7 by assigning E a small negative imaginary
part, Re ®(E) is negative. On the other hand, the
imaginary part of ®(E), which corresponds to the
part of the integral from E —M; to o, remains
unaltered. These characteristics of ®(E) imply a
branch cut running from E to « in the complex
E plane, with discontinuity (from top to bottom)
equal to 2Re ®(E). In addition, since ®(E) is
completely imaginary below Er, iP(E) is a real
analytic function.

Analytic continuation of the function ®(E) in
the E plane implies the movement of the branch
point E—M; in the M plane. If in the process of
analytic continuation, this branch point approaches
the contour of integration, the contour must be dis-
torted to avoid the branch point singularity from
reaching it.> Consequently, a 27 rotation of the E
vector around Ep in the E plane will cause the
contour to be distorted in the manner shown in
Fig. 4. When point E enters the unphysical sheet
of the cut at E=Er in the E plane, the branch
point M =E —M; in the M plane slips into the
second sheet of the square-root cut at M =Mr,

1M £
Re(E) +ie~M3

Re{E)+ie
.

——D

Ey

FIG. 3. Analytic continuation of ®(E) to Re
(E)>Er and Im (E)=¢>0.

M E

___Eon 2nd sheet

|
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FIG. 4. Analytic continuation of ®(E) to E on the
second sheet of the cut at E=Ej causes distortion of
the contour of integration in the M plane.

causing distortion of the contour. In the limit the
imaginary part € of E approaches zero, the seg-
ment (1) of the contour yields a value equal to Re
®(E) of Fig. 3. This is due to the fact that in the
evaluation of the integral for segment (1) in Fig. 4,
both the vectors M — M and E —M;—M are to be
regarded as carrying an extra phase of — 27 each
due to the 27 rotation of E around E=E;. Thus
each of the square-root factors (M —M)'/? and
(E—M;—M)"? has an extra negative sign which
cancels the other since they enter as a product.
The sign of (E —M;—M)'/? on segment (2) is,
however, positive since it lies on the other side of
the cut. But this change in sign is offset by the
negative sign that arises from the fact that integra-
tion is in the opposite direction, i.e., from E —M;
to M. Thus the same value, namely, Re ®(E),
corresponding to the first sheet, obtains from seg-
ment (2). Segment (3), being close to the physical
region and extending to o, yields the same contri-
bution as the contour in Fig. 3. The contributions
of these segments forming the entire distorted con-
tour of Fig. 4 add up to give for E on the real axis
of the second sheet of the cut at E=Er,

D(E)pheet =3 Re ®(E) +i Im D(E) . (5

This result shows that the cut at £ =Ej cannot be
of the simple square-root type. Rather, the further
observation that subsequent 27 rotations of E
around E7 in the same direction cause ®(E) to in-
crease at the rate of 2 Re ®(E) per rotation sug-
gests that the function must possess some kind of a
logarithmic behavior at E = E with an infinite
number of sheets attached at that point [if we had
chosen to make the aforementioned rotations in the
opposite direction, we would have, instead, ob-
served decreases in the real part of ®(E) by the
same amount]. Furthermore, from Eq. (4¢), we
find that Re ®(E) in the vicinity of the threshold
E =E7 has the behavior
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L+1/2

E-M
Re ®(E)~const fM 3(E_.M3_M)x L4142
T

(M —M7)Y*12dM =const B(; + 5,/ + 3 (E —Er) , (6)

where B(l; + %,f—r%) is the familiar beta function (Euler’s integral of the first kind).
In view of the foregoing results, it is now possible to write for E near threshold,

L+1+2

S(E)~(i /m\E—Er) ln(ET—E)+i[a0+01(E—ET)+a2(E_ET)2+ -1, )

where a;, are real and ay is positive or negative according as I; is even or odd.

B. Branch points at E=E, =Mo+M;+il' /2.

In the M plane, besides the two cuts already discussed, there are two complex conjugate poles at
M, =M,+iT /2 and a pole of order /; +7+1 at M= —a. These occur on all the sheets associated with the
branch points at M =My, and M =E —M;. Figure 5 shows separately the pinching of the contour between
the branch-point singularity E —M; and the poles My —iT"/2 and My+iT' /2. These correspond, respective-
ly, to analytic continuation of E to E_ =My+M;—il'/2 and E =My+M;+il /2 on different nonprinci-
pal sheets of the log cut (shown in Fig. 4), reached by burrowing through it from the top (for E_) and the
bottom (for E_ ). Since pinching of a contour results in a singularity at that point,’ the points E=E are
singular on these unphysical sheets. Figures 6 and 7 illustrate explicitly the singularity behavior of E . .
The contours in Fig. 7 are equivalent to the contours in Fig. 6. The contribution of the closed contour en-
circling the pole is of opposite sign in the two cases considered. In the first case, the closed contour integral
yields

—2ri X (residue at M, =M, +iT /2)= —27

"M, +a)

(E—E+)I‘+1/2

L+T+1 (M, —]‘4T)T+1/2 ’ ®)

while in the second case the same expression ob-
tains but with opposite sign, since the closed con-
tour encircling the pole lies below the cut attached
to M =E —M;. Consequently, E_ is a branch
point with the discontinuity (top to bottom) across
the associated cut (see Fig. 8) given by

4 A
L+T+1 (E—E, )Il+1/2
'M, +a)

X (M, —Mp)+172 ©)

D, =

Likewise, the discontinuity across the cut, which
also exists at E=E _ (see Fig. 8), although on the
different unphysical sheet, is

4 .
D= - L+T+1 (E—E_)"'"
rM_+a)t
X (M_ —Mp)*172 (10)
lM- L}

Mo+ iT'/2

* | tess”

Mo-il/2

FIG. 5. Pinching of the contour between the branch
point E — M and the poles M +iT" /2.

—
The above cuts at E, and E_, in fact, appear on
all the nonprincipal sheets of the logarithmic cut at
E =Er, the discontinuity across them being dif-
ferent on different sheets. It is clear that £, and
E_ are not singular on the principal sheet of the
log cut because an analytic continuation to these
points corresponds, in the M plane, to a direct
movement of the branch point E —M3; to the poles
My+iT /2. That is, the point E —M; goes past
the point My under it and over it (which is the re-
verse of what we have in Fig. 5) for analytic con-
tinuation to E_ and E , respectively, causing no
distortion of the contour in either case.

In a similar fashion, we can show that branch
points exist at E=M3—a on all the unphysical
sheets associated with the logarithmic cut. For
suitable values of a, they can be made to lie to the
left so as not to interfere with the right-hand cuts.

M M
Mo +iT/2 E-M3
D -~
ﬁ\ {fM-:«» /2
E-M3

FIG. 6. Two possible ways of analytically continuing
®(E) to E in the neighborhood of
E,=Mo+M;+il/2.
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FIG. 7. The above contours are equivalent to the
contours of Fig. 6 in the same order.

In Appendix A, we give the detailed analytic ex-
pression for ®(E).

III. CONCLUSION

In summary, we have presented an integral rep-
resentation for quasi-two-body phase-space factors
which is general enough to be used in 7N, KN,
etc., partial-wave scattering studies. We have ex-
amined its analytic structure in detail and shown
that the unitarity cut occurring in the partial-wave
amplitude due to the onset of the three-body chan-
nel is of a logarithmic nature in contrast to the
square-root nature of the two-body unitarity cut.
Moreover, the enhanced strong interaction among
two of the three particles in the final state,
described by a Breit-Wigner propagator, gives rise
to square-root cuts on the unphysical sheets at-
tached to the three-body logarithmic cut. The
standard procedure for analytic continuation easily
yields discontinuities across these cuts. Further-
more, we are able to render the integral representa-
tion into a tractable, analytic form, convenient for
use in the analysis. As pointed out earlier, we have
already used it in the phenomenological study of
the 'D, and the *F; NN partial-wave amplitude.
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FIG. 8. The three-body logarithmic cut at
E=Er=M,+M,+Mj;, and the quasi-two-body
square-root cuts at complex-conjugate positions
E=E,=M,+M;+iI'/2 on the unphysical sheets of
the cut at E=Ey.

APPENDIX A
The integral
oB= [ (E—M3_IMf)"'“”(M_MT)”WdM’
T M+ T (M =My T2 /4]

(A1)

after a series of substitutions, can be cast into the
following form:

®(E)=— - LI, (A2a)
2id"

where

Il(i{)f(E)z fol (bz—a)l"+;/jij_z)f+1/2dz

(A2b)

and

zi=a/[c+(—1Yid], (A20)

e=Mr+a, b=E—-M;+a,

c=a+M, d=T/2. (A2d)

The integral I ,(’ )f is further expressible as a sum of

of Energy supported this work. the series
) ; ‘ I »o
L=b le (bzj—a)" =V, _, p—(bz;—a)" 21(1_zj>"-1J0j_,,+(1—z,->’15{6 , (A3)
= n=
where
1
Tnmy= [ bz —a) 12y (A4

The integrals I, n, satisfy the recursion relations
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(—1)"ig™ ™% (ny+1/2)(b—a)

= J
ny,ny (n1+n2+2)b + (n1+n2+2)b nyny—1> (AS5a)
g (=DM g 1/2)(b—a) st
et ny+ny+2 ni+n,+2 mi=hny

Clearly, from Jj o, Jn,,n, can be evaluated for all n; and n,. Moreover if I 0 is known, IV i f can be deter-
mined. The phase-space factor ®(E) which is obtained from IV I ,, can thus be written as an analytic expres-

sion.
Straightforward integration by parts yields for Jg g

. a+b 1,2 (b—a)? /2_pl2
Jop=1|=3p = a7 +i 83/ In a2 p 172 (A6)
Similarly, the expression for I {{ ) is
a+b—2bz; |[q1/24p12 [ (1—2)"2a' 2 - (a —bz;)' "

Ify=—ia'*—i

+l(a —bZJ )1/2( 1 —Zj)l/zln

12_p1/2

2b1/2 (1_Zj)1/2a1/2_(a_sz)1/2

(A7)
To determine the analytic structure of ®(E), expressed in its analytic form, it is sufficient to consider f{f)
and Jo 0. While Jy has only a logarithmic branch point at E=E (see Fig. 8), I (()’ b contains this branch
point as well as the branch points at E=E, (see Fig. 8). By making appropriate expansions in Egs. (A6)
and (A7), it is now easy to verify the results Egs. (6)—(9).
Threshold behavior for I; =0, [=0 is given by

ia 3e? e é
o= ———In24+—In(—€/2a)---
(c—a)l+d* | 16a*> 8a® 8a’ ) ]
1 €2y 6222 —2Z
— - 1
+ 2d 27 24 8aX(1—z,) " [ t—z,
€Z, 62212

In | —2
n 1 —Zl ’ (Ag)

where e=E —Ey. It is obvious that ¢ is completely imaginary for € <0. For €> 0, it has a real part which

it acquires from the term

& &
In

€ €
8a? e>08a?

. 2 .
- (A9)
8a

_ £
2a

€.
2a

In the above transformation, we have assumed that the analytic continuation is made to the top of the loga-
rithmic cut as in Fig. 3. Inserting Eq. (A9) in Eq. (A8), we find

e mE—Er)?

Re® y= = (A10a)
| threshold(e>0) 8a[(c—a)*+d?]  8(Mr+a)[(My—My) +T?/4]
which agrees with Eq. 6. Also from Eq. (A8), we find that at €=0, i.e,, E—E7,
Im®=Im[(1—2z,)In 17d . (A 10b)

Behavior near E=E, =M,+M;+iI'/2. E=E are branch points as noted in Sec. II and shown in Fig.
8. At E=FE_, a—bz;=0 and the argument of the logarithmic function in the third term of If 0, $ reduces to
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y=e?™ n=0,+1,+2,.... (A11)
On the first sheet, n =0, and expansion of this logarthmic function around E=E _ gives the result

Na—bz)? Fla—bz)?

(1—21) %12 + (1—z,)¥%a"

ila—bz)H(1—z)? (A12)

for the third term in the expansion of I 8()).
Clearly, there is no cut at E=E_ on the I sheet. However, when n=£0, we immediately see that Eq.
{A12) acquires an additional term, namely,

i2mn Xila—bz )V H1—z)2 . (A13)
Thus on the sheet characterized by integer n, there is a cut for which the discontinuity is given by

2min X 2ila —bz )1 —2)12

di tinuity = Al4
iscontinuity VI bl My be e (Al4a)
which upon substitution of b simplifies to

4 (e+ie)'”?

4 latie) N, Al4b

™ (e Zid) (c—a—id) ( )

For n =1, which corresponds to the second sheet reached from the top of the logarithmic cut Eq. (A14b)
reduces to Eq. (10).
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