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~ Analytic expressions for the'D function in a2 phenomenological N/D model are given. These expressions can be of con-
siderable use in"'phenor_nenologiéal studies of partial-wave scattering amplitudes pertaining to systems such as N, KN, NN,
etc. Extension to the case in which one of the two particles in a channel is an isobar is also considered.

1. Introduction. The N/D formalism has long been recognized [1] as a useful tool to study the dynamical con-
tent of partial-wave scattering amplitudes for systems such as 7N, KN, NN, etc. Its practical use in general has,
however, been limited by the massive amount of numerical work that is usually involved in its application. In
hadronic phenomenology, the attempt to circumvent this difficulty has consisted in replacing the left-hand singu-
larities of the amplitude (which are mainly of the branch point type) by an array of poles on the left-hand part of
the energy axis. However, in spite of this approximation to the left-hand singularities, it turns out that the D-ma-
trix exists as an integral, which more often than not, requires numerical calculation.

Motivated by a need for a tractable N/D model we present in this paper analytic expression for the aforemen-
tioned integral in a phenomenological formulation of the N/D model. We consider the general case of scattering
involving two particles with relative orbital angular momentum /. Also near the end, we discuss the consequences
of mass averaging which is required when one of the particles involved is an isobar.

2. Writing the S-matrix element for the single-channel case as

Si(s) =1+ 2ip(s) 41 (s) (1)
the reduced scattering amplitude 4; in terms of the familiar functions, Nj and Dy, is
Aj(s) = Ni(s)/Di(s) . (2)

The subscript / denotes the relative orbital angular momentum of the particles in the two-body channel under con-
sideration. p; in eq. (1) is the corresponding two-body phase-space factor. The Mandelstam variable s equals the
square of the center-of-mass energy. The product of p; and 4; is the conventional elastic partial-wave amplitude.
Each of the functions V; and Dy is real-analytic with N; possessing the left-hand dynamical cut and Dj the right-
hand unitarity cut.

It is customary in a phenomenological treatment to approximate Im A4; on the left-hand cut by a series of -
functions, i.e.,

n
Imd;=— Zi aP)s (s — s@)) . 3)
s
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This then leads [1] to
AODy (@) Ly S Al
Dis) =1 —— 22 \Op,(s@ : 4
Nifs) = >; — 19=1 -7 2O [ ol e ey (4a,b)
1

where s1 is the threshold energy squared, and Dj(s) - 1 as s — . Under the approximation of eq. (3), V;(s) is
represented by a series of poles simulating the effect of the left-hand cut. In phenomenological studies, the pole
positions s®) and the force parameters \(p) are determined by fitting the resulting expression for the partial-wave
scattering amplitude to the given set of predetermined phase-shifts. Our primary aim here is to obtain an analytic
expression for Dj(s) given in eq. (4b). Clearly, it is the integral therein which we must cast into an analytic form.
This we do below.

For a two-body channel, it is well-known that p;(s) near threshold behaves as g2+ where g is the center-of-
mass momentum. This behavior gives rise to a square-root unitarity cut at s = sy in the complex s-plane. Conse-
quently, for phenomenological purposes, one may define

pi(s) = [(s = s1)/(s — )] T2, (5)

The factor in the denominator of eq. (5), which incidentally gives rise to a left-hand branch point at «, is necessary
to ensure the convergence of p;(s), i.c., as § > o, p;(s) = 1. This parameter « can be fixed at a convenient value or

simply set to zero. The form, eq. (5), for p;(s) has been effectively used before [2]. Using it in eq. (4b), one easily

sees that the calculation of the Dy function involves integrals of the type

s — g1 \[tH/2 ds’
)= f " ey ©)

whose analytic expression we are interested in.
Via a series of substitutions, we can easily cast the integral /; into the following form:

=(c— b) Hd® — b1y, (7
where
1+1/2 1 N+1/2
0= (1-2) . n_ fU-2) ; 82 b
f a—cz a, 12 Of a— bz @, (82,b)

and
a=s1—a>0, b=s(p)—a, c=s—ua.

We can further express the integral 12” as

— 1 —a\l
/0 _lc}_jl (“ C“)" Jin (C “) OB ©)
n=
where
_ j(l m1)2 gy = 2 10 = 2 (c—a)1/2<1 [(C~a)/c]““+ ) (10.11)
" 0 - 2m+3’ c 32 T [e-a)e] P ) ’

It has the same series expansion as Td in eq. (9), except that ¢ is replaced by b. The expression for / 0) i
¢ q P
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1/2 . _ 1/2
120):%+_(a—b) ( 1 1[(” b)/b] ) (12)

e A @ pyp T

(b > 0is assumed here and hereafter).

3. Analytic structure of 1;(s). The integral £;(s) in eq. (6) is given by eqgs. (7)—(12). However, to understand its
general analytic properties, one need only consider the case corresponding to /= 0. Examination of I in eq. (11)
shows that a right-hand branch cut exists at s = 51 (see fig. 1) with the discontinuity across it given by

lim (79 +ie) — I0(s — ie)] = 2m[(s — s7)/(s — )] Y2(s — 0)~ 1 . (13)

When s <s1, [(c — @)/c] Yz, i[(a — ¢)/c] Y2 and I becomes real. Since [E)O) has no energy dependence and is
always real, Ig(s) is real-analytic.

@) Ars=s@.

(2) On I (principal) sheet of the s = s; cut. When's - s@), ¢ > b and (c—a)>0~(b—a)<0. As a consequence,
{c— a)1/2 ->i{a ~ b)l/z, implying Igo) = [g()). We have here a situation involving 0/0 for the value of 7. Expansion
of I around ¢ = b shows that

‘ ) ma - ia L—ifla— b))% 1
s OO T 232 T 23y T ey (14)

which is a finite quantity.

(b) On II sheet of the s = s; cut. On this sheet of the cut reached by burrowing through it from the top or the
bottom (see fig. 1), (¢ ~ a)1/2 > —ifg — 6)1/2 for s <51 in the expression for 1£0>. When ¢ = b, only the log terms
cancel. Thus

. 2m [y —s@p2 ,
IO(S = s(p))[H: hr(r})) m)) (m) + the finite result of eq. (14) s (15)
§—=§

implying there is a pole on the II sheet with a residue = 277[')(s1 — sPh/(sP) — q)] 12 This fact is also verified from
consideration of pinching singularity that appears at s = s@) in the analytic continuation of the integral represen-
tation of Jo(s), performed by deforming the contour of integration.

As aresult of the foregoing analytic structure of /;(s), D;(s) has a pole at s = %) only on the II sheet of its cut.
Furthermore, since V;(5) has poles on all the sheets of the cut associated with Dy (s), the amplitude 4;(s) = Ny(s)/
Dy(s) possesses a pole at s = s only on the I (physical) sheet, as one expects. In a similar way, one can show that
the branch point at s’ = @ in the integrand of eq. (6) is generated in complex s-plane at s = « but only on the un-
physical sheets associated with the cut at 5 = s7.

For completeness, we mention that near ¢ = a,ie. s =sy,

Im 7o(s) = [n/(c — )] [(c — a)/c] M2, (162)
for ¢ — a >0, while

oA Fig. 1. The complex s-plane showing the right-hand unitarity
cut at 51 and the position ${P) of one of the input poles repre-
senting the function N (s).
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_; . 1/2
Real /y(s) = 1 (W _i] 1—if(a — b)/b]

b2 — p)172 L+i[(a = b)/b] 1?2

Furthermore, for the case s = o=, one notes that ¢ - e and (¢ —a)/c~ 1. Consequently, the argument of the log
function in eq. (11) goes to zero. But appropriate expansion shows that in this limit, s - oo,

Imi;(s)~1/s, Re Ji(s) ~ In(s)/s , (17a,b)

)+ O((c — a)lc) . (16b)

verifying that D;(s) = 1 as s = oo,

It may be noted here that the foregoing results, although derived for a one-channel case, are also applicable to
D functions which occur as elements of a D-matrix in a coupled-channel treatment. If, however, one of these D
functions pertains to a quasi-two-body channel, such as 7A in 7N scattering, NA in NN scattering, etc., an average
over the variable mass m of the isobar must be performed. This averaging can be carried out as follows:

=5 [ 1

r_ [+1/2 o g
S1=(my+my+ms)? (s a) (S s(p))(g $)

ST Y (g + m)2) 2 mr) Y2 am

X : ds’, (18a)
MT=my+n, [(mg — m)2 + F2/4] J(m) )
r (m - mT)l,H/z ( ) [s" = (m3+ nz)z]lﬂ/z ds’ )
-E . 7 7 ; dm 18bh
I?[Fm]ﬂn; [Gmo — m)2 ¥ F2/4] fim) (m+m3)* (s — &)Hl/l(s - S(p))(s -5) (18b)
where
g = (I/2m) f(mo)/(mg — mr)| *1/2 (19)

and 1/f(m) is some form factor in the m dependence, which also ensures the convergence of the integral in the m
variable [3]. It may, for example, be of the form: fmy=(m - 5)21+1’+1 where (3 is a phenomenological parameter
less than (7 + m2). m1 and m2 are the masses of the particles into which the isobar decays, and /' is their relative
orbital angular momentum. m3 is the mass of the stable particle produced along with the isobar. This isobar cor-
responds to a complex mass of mg— il'/2. One may note here that, in the limit ' = 0, the foregoing double integral
reduces to the integral of eq. (6) as expected. One also observes here that the integral over s’ in eq. (18b) can be
replaced by analytic expressions since it is of the type given in eq. (6). But obtaining an analytic expression for
the subsequent integral in the m variable in terms of simple mathematical functions does not seem to be possible.
Nevertheless, despite the lack of such expressions, one can still point out some interesting analytic properties of
the function /;(s) from a study of its integral representations in eqs. (18a) and (18b). From eq. (18a), we sec that

~ /s—m3 27+1/2 V172
, . ) 2mig [s — (m3+m)~] (m — m7) dm
lim [/(s +ie) — I(s — S TR T g 20
61_{1(1) Vs +ie) = 1G —ie)] (s — ) 12(s - st 77!;*"”12 [(mg — m)* + /4] f(m) (202)
~ (V=S nears=gg (20b)

where s1 = (m + my + m3)2 [3]. The integral nature of the exponent implies that the right-hand unitarity cut at

§ =51 in fig. 1 is no longer a square-root cut. Rather, it is of the logarithmic type with an infinite number of sheets,
as discussed in ref. [3]. Eq. (20a) further suggests that the analytic continuation of /;(s) to the unphysical sheet
(say II sheets) reached by burrowing from the top of the cut at s = §1 can be achieved in the following way:
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Ti(s)l11=[;(s) + right-hand-side of eq. (20a) , 20

In the lower-half of this unphysical sheet (on which the resonance poles of a scattering amplitude can exist) is pres-
ent a square-root branch cut at s = s, = (mg+m3z — iI‘/Q)z. This square-root cut appears due to the pole at mg—il"/2
in the integrand of the integral of eq. (20a). It can be taken to run to the right and parallel to the Re s axis in fig. 1.
By the procedure of analytic continuation described in detail in ref. [3], one can show that the discontinuity

across this cut (i.e., for Re s > Re 5¢) Is given by

lim [7(Re s + i Im s¢ + ie) |1y — Ii(Re s +ilmsg— ie) 1]
e->0

=—2 mi X residue of the pole at mo — il'/2 in the integrand of eq. (20a)

X the factors multiplying the same integral (22a)
B 4nlig [s — (m3+mg— il"/2)2]1+1/2(m0 —my — mg —il/2) /2 (22b)
(- a2 @ If(mg —i0/2) ' -

In a manner analogous to the analytic continuation of ;(s) into the II sheet associated with the cut at s = g7 =
(my +mq + m3)2 [see eqs. (20a) and (21)], the knowledge of the above discontinuity provides analytic continua-
tion of 7y(s)| 1y into the unphysical sheet associated with the above square-root cut at s = Sc. Analytic continuation
into this region of the complex s-plane is necessary to uncover any influential nearby poles of the scattering 7-
matrix that may be present.

In conclusion, we have presented analytic expressions for the integral 7;(s) in a phenomenological N/D formula-
tion for two-body scattering states. When one of the two particles is an isobar, an average over the variable mass of

sheet structure is more complicated in this case, one finds one can still provide a prescription for analytic continu-
ation of /;(s) into the unphysical regions of interest,
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