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PACS. 13.75. — Hadron-induced low- and intermediate-cnergy reactions and scattering,
energy < 10 GeV.

Summary. — The effect of the opening of the wn channel on the np elastie dif.
ferential cross-section is investigated. It is shown that, despite the wn’s large produe-
tion rate, the 10 MeV width of e is large enough to smear the cusp and render it un-
observable as a dramatic effect in the 7p elastic differential cross-section. This is in
sharp contrast to a prominent cusp observed at the wn threshold.

Sometime ago, an experimental group at the Rutherford High Energy Laboratory (1)
reported measurements of the differential cross-section for the reactions Tp —=p,
7n and #m in the near-backward direction. An interesting feature of the data was the
presence of a sharp cusp at the 4n threshold (1489 MeV of center-of-mass energy) in
the elastic reaction =p — 7=p. The cusp was attributed to the strong opening of the
7 channcl in a S-wave (18). At a higher center-of-mass energy (~ 1723 MeV), the
wn inelastic channel also opens up in a S-wave, and with a fairly large production
rate (34). Consequently, it is of interest to examine the possibility of a similar cusp-
like behavior at the wn threshold. This letter presents the results of such an investigation.

The =n—p elastic amplitude can be expressed in terms of the well-known no-spin-flip
and spin-flip amplitudes, f and g, as

(la) HM(0) = f(6) —ig(f)o n,
b _ kxk , ,
(1b) n= r, k| = S1n gi — cos ¢f ,
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where k and k' are the initial momentum (along the positive z-axis) and the final mo-
mentum (in the ¢ direction), respectively, of the pion in the center-of-mass system,
The elastic = p differential cross-section is given by

(@) B = el
In terms of the =.\ elastic partial-wave amplitudes,

J(6, k) =
(3) ;
g(6,k) =

M

C{(1 -+ Dy (k) + laf’)_3(k)} P(cos 6),

3

C{aiea(k) — aifl_y(k)} Peos 0)

o

=3

where i denotes the isospin state of the =N° state and the isospin coefficients 'y and Cj
are, respectively, 2 and 4. P7' are the associated Legendre polynomials.

In order to obtain an expression for J{f) in the vicinity of the wn threshold, one
first notes that, in general, when an inelastic channel opens up, the elastic partial-wave
amplitude (denoted by ¢ below) behaves in the vicinity of the inelastic threshold as (3)

(4) t =1, 4+ 1ot’2 + higher orders in p,

where {, is the value at the inclastic threshold, g is the phase-space factor for the inelastic
channel and ' the corresponding inelastic amplitude at the inelastic threshold. In the
case of the on channel with which we are concerned, there are two possible initial
=N states, 8; and Dy, (corresponding amplitudes: a;li and aff;) which eontribute to
on production in S-wave. Denoting the corresponding inelastic amplitudes by s and d,
the total elastic amplitude in the neighborhood of the wn channel, to first order in p, is

(5) M(0) = BL0) + ¢ %9[82 + @2{(3 cos? 0 —1) -+ isin § cos Bc'n}] .

Since o is unstable (decays into 3z, width I' = 10 MeV), ¢ is a quasi-two-body phase-
space factor which, for our purposes, can be defined by

_or VE— (m + my) dm

(6a) o(E) ,
27 (my, —m)? + I'?/4
MT=3m
2mgmy, \}
(6b) C={—"7},
My —+ My

My = 0.140 GeV, m, = 0.783 GeV, m, = 0.940 GeV. Clearly, in the limit I'— 0,
o(K) reduces to the expected nonrelativistic expression for the center-of-mass momentum,
M, in eq. (8) corresponds to the center-of-mass energy 3m, + m,. But, in what follows,
it is convenient to use the «threshold » energy, E, = m, + m, = 1.723 GeV as the
reference point. Thus, we rewrite eq. (5) calling M, the value at B = F,:

(Ta) M= M, + i—%’—(SQ)[SQ + d*{(3 cos? @ — 1) -+ i sin 0 cos 0c-n}] ,
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where
(7D) So(E) = o(E) — g(mg, -+ my) .

In the calculations pertaining to the elastic differential cross-section, we choose § = =
for the sake of illustration. This corresponds to scattering in the backward direction
as in the wn case (}). Substitution of 6 = = in the foregoing results gives M, = f,
(see eqgs. (la) and (3)) and

(8a) I = folm) + i(3) () + 247],

which implies

d 4
(8b) 5 = lfol) P — 5 [1m () Re (8p) + Re (F) Im (3¢)],
where
(9 F = fi(n)(s? + 2d2).

The behavior of do/dQ clearly depends upon the value of ¥ at the on threshold. From
eq. (9), knowledge of fy(=), s and d determine F. As far as fy(x) is concerned, it can bhe
calculated from the =V’ partial-wave amplitudes using eq. (3). The result for its magni-
tude is ~ 0.5 (GeV)~t. Although s and d are individually unknown, a rough limit on
the magnitude of s* + 2d? can be placed from an analysis of experimental information
on wn production in (). We first note that the total wn produection cross-section is
given by

(10a) o; = 47:(;) —R—?]—c(vg) (|s]2 + 2]d|?)
implying

3 4dm (2 ) .
(10b) 0i(B) —a,(Hy) = 7_c<§) Re (3¢)(ls]* + 2d[?).

Considerable simplification results if one notes that the lower limit of the integral in
eq. (6) can be extended to — oo, without causing any appreciable error in the calcula-
tions. This is so because the width of o is only 10 MeV and, therefore, the main con-
tribution to g(¥) comes from values of m in the vicinity of m,. The result under this
approximation is

(11a) 80/0 = (H— B, + ilj2)i— (ilj2)},

which implies

(11) Re (3¢) = 0 [{M ﬁg)%}% _ (ﬁ)*} ,

2 2

P4

e i)t B\
(11¢) Im (3g) = C[{(ij—g)—“} —(%)}

where « = F—F,, f=1}2.
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A fit of eq. (10b) in conjunction with the result, eq. (11b), to the experimental values
of 0,(E)—o0,(F,) in (?) yields

o,(EH) — 0,(F,) . 47
Re(8g) &

2

(5) (|s]? + 2{d[?) ~ 10 mb/GeV .
Using k(I,) = 0.6 GeV, one obtaing

(12a) s|2 + 2|d]2 ~ 1.8 (GeV)-2.

This result implies the inequality

(12b) |52 + 242 < 1.8 (GeV)-2.
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Fig. 1. — The continuous lines are the theoretically calculated behavior of do/df2 (for backward
direction in the center of mass) in the vicinity of wn threshcld (E,) for the phase @ of F equal to
@) 30°, b) 135°, ¢) 240° and d) 330°. See text for the definition of F. K is the center-of-mass energy.
The broken lines correspond to the behavior in the limit I — 0, where I” denotes the width of the

T w-meson.
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By asswming the upper limit (for the sake of illustration) and using fy(m) = 0.5 GeV,
the magnitude of F from eq. (9) is

(13) |F| = 0.9 (GeV)-3.

Because of the dependence of the phase of F on s and d, it is not determined in our analysis.
Consequently, in fig. 1, we display the behaviour of do/d®2 at the wn threshold for four
different values of the phase (0) of F'. The dashed curve corresponds to the case I' — 0.
Comparison of the two curves (I" = 0 and I = 10 MeV) for each case of 6 shows clearly
that, even though the width of o is only 10 MeV, it is large enough to smear the sharp
threshold effect expected in the I' = 0 case. Therefore, in an experiment similar to the
one performed for the wn case (1), a sharp change in the behavior of the =p elastic
differential cross-section at or near the wn threshold may not be visible. Nevertheless,
a behaviour of the type depieted in fig. 1 (by continuous lines) is expected, provided
the errors on the experimental data points are not too large. That this behavior depends
upon the phase 6 of F can be explained in the following way: If an extremum exists in
the neighborhood of the wn threshold, as in fig. 1a) and l¢), its position can be obtained
from eq. (8) differentiating do/d2 with respect to « (see eqs. (11b) and (11¢)) and setting
the result equal to zero. This set of operations gives

Im (F)  {(x2 + )t — o,
13 tg = = ’
(13a) T Re (@)~ {(a® + pUE L aph

which simplifies to

(13b) o, = Bltg 26
and, using « = F — F,, is equivalent to
(13¢) B, = E,+ I/(2tg20),

where the quantities with subscript m refer to the values at the extremum. From eq.(13a),
it is seen that an extremum exists only when tg 0 is positive, i.e. either 0 < 6 < 90°
or 180° < 0 < 270°. Furthermore, it is also clear from eq. (13¢) that the extremum
lies to the right if 0 < § < 45° or 180° < § < 225° and to the left if 45° < 6 < 90° or
225° < § << 270°. The second differential of do/dQ with respect to « gives upon using
the result, eq. (130),

14 @ (Ao} 8Y e 0] sin® 6 cos? 6

(14) i\ao _MW(C‘O )} F|sin® 6 cos? 0.

This result shows that the extremum is a maximum for 0 < § < 90° and a minimum
for 180° << 0 < 270°. The curves in fig. 1¢) and ¢) are consistent with the above gencral
result. It is, however, important to mention here that the location of the extremum,
as given by eq. (13¢), is meaningful only if tg 0 is close to 1, i.e. if E_ is close to E,.
This is due to the fact that the expansion in eq. (8b) is valid only in the immediate
neighborhood of E,. Finally, one notes that the curves in fig. 1b) and d) do not
display an extremum. Rather, in such cases (90° < 6 < 180° or 270° < 6 < 360°),
a point of inflexion exists near E,. The rise and fall of do/dfR in fig. 1) and d)
can be understood by setting its double differential with respect to « to zero and

examining subsequently the derivative of do/df2 (with respect to «) at the point of
‘inflexion.
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In conclusion, the strong opening of the wn channel () gives rise to the possibility
of a sharply changing = p differential cross-section near the wn threshold. However,
our analysis shows that this expeeted sharpness (or cusplike behavior) is substantially
smeared by the 10 MeV width of . Nevertheless, precise experimental measurements
of the mear backward (8., =~ 180°) differential cross-section should be capable of
revealing its general behaviour near the wn threshold, and thus be able to shed some
light on the phase of F (defined in the text). Although we have considered only
0, = 180° (for illustration), experimental differential cross-section data corresponding
to different center-of-mass angles can also be analysed within the framework of our
model. In fact, a complete analysis involving different center-of-mass angles should
in principle be able to yield some useful information on the f and ¢ amplitudes at the
on threshold. Such information, one notes, can be an important constraint in =\’ par-
tial-wave analysis.
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