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Abstract

For numerical tests of the calculational procedure for scattering by a multilayered sphere, absorption of
visible light by graphitic carbon (scot) mixed with nonabsorbing or weakly absorbing material like wabter is
calculated. Three cases of mixing within the framework of the multilayered model are considered: (1) carbon
exists as a tiny core within a water droplet, (2) carbon exists as a thin shell on the outside of the water
droplet, and (3) carbon exists as a thin shell within the water droplet (double-~layered case). Numerical
calculation of absorption cross sections is performed, ftreating the carbon content in each case as a perfurba-
tion in the Mie scattering of 1light by a homogenecus sphere of water. The results obtained agree perfectly
with those obtained directly by the use of algorithms based on the exact expressions.

I. Introduction

In the preceding paper®, we proposed a calculational procedure for light scattering by a multilayered sphere
with an arbitrary number of layers. In this paper, we describe some numerical tests of the calculational
procedure. The tests are based on the concept that when one of the layers is thin, the scattering by a multi-
layered sphere is reduced to scattering by a multilayered sphere with one less layer (the thin layer), the
thin layer acting only as a perturbation. The same argument holds if the inner most core of the sphere is
tiny. In either case, a direct computation of scattering using the calculational procedure of Ref. 1 must
yield results corresponding to the perturbative approach.

We begin by stating the exact analyfic expressions for scattering by a single-layered case in Section IT,
and subsequently report the results for the case of a tiny core embedded at the center of a sphere in
Section III, followed by the results for the case of a thin shell around a spherical particle in Section IV,
Section V discusses the case of a thin concentric shell of a different material within an otherwise homo-
geneous sphere (a double-layered case). For each of these cases, numerical results are given for absorption
of visible light by water droplets contaminated with graphitic-carbon (soot) (existing as a tiny core or thin
shell as discussed above).

I1I. Single-Layered Sphere

According to the results of Ref. 1, the partial-wave scattering amplitudes for a plane-wave incident on a
single-layered sphere (Fig. 2 of Ref. 1) can be written as®
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where A is the wavelength of the incident wave and rq, rp the imnner and outer radii of the shell, respectively.
my and my denote the refractive indices of the material in the core and within the shell, respectively. The
Ricatti-Bessel functions are
b, (2) = 25 (2)
X, (z) = -zn (z)
¢ (2) = 2P () (8)

(2)

where Jpn, N, Dp

The extinction cross section, the scattering cross section, and the absorption cross section are calculated
from a, and by in the following way:
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are the spherical Bessel, Neumarm, and the Hankel function of the second kind, respectively.
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I1I. Tiny core radius

Assuming [mlj xq << 1and |mp| x7 << 1, the Ricatti-Bessel functions with the arguments mixq and mexg in
Egs. (3) - (6)7can be expanded around zero®. Retaining the most leading term in the expansion Eq. (9§ reduces
to
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f'., 1is the correction term to the scattering amplitude a <h), as a result of the tiny core. The correction
térms for the remaining amplitudes, ay, h) amd b (h), are of higher order in xq1 and neglected. The guantity
Bl/al corresponds to Raylelgh scattering amplitude for a plane wave travelling in continuous homogeneous
medium with refractive index mp and incident on a tiny homogeneous sphere (parameters ml,xl) embedded in such
a medium. If one further recognizes that i/Dl(h> = the coefficient associated with the field inside a homo-
geneous sphere (parameters mp,x5), the factor - (1/D1(h>)2 in the expression for £ may be interpreted as a
necessary modification to Bl/al, since the wave incident on the core (radius rl) is not the initial plane-wave
but the field inside the larger sphere (radius rp). Moreover, the wave scattered by the core 1s not being
detected within the medium of refractive index ms, but outside of the larger sphere where the refractive
index is 1. This also explains the extra factor of m; in Eg. (11) (see the Fresnel coefficient for trans-
mission of light").

If myisreal, o () _ 0 and =g. (10c) reduces to

abs
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which corresponds to absorption in the Rayleigh region modified by factors as discussed earlier.

One of the quantities of interest in the study of the effect of mixing of absorbing material with a non-
absorbing material is the absorption cross section per unit volume (or mass) of the absorbing material.
Denoting the volume of the absorbing material by V and using Eg. (15), one obtains

4 2 N
- =-6m W Im (my - ml) (h),2
el * I IO oy "
my + 2m2 j
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which is independent of the size of the core, a familiar result in Rayleigh scattering. As an illustration,
we consider the absorption of visible light by a tiny graphitic-carbon (soot) core at the center of a water
droplet. This is a case of practical interest in the study of scattering of light by fog or clouds. For
calculations, we choose rp = 5um, A = 0.5um, mp (water) = 1.33-10+00, and let m; = 2.0 - im. For the special
case of soot, we take my = 0-66. Fig. 1 shows the plot of o4ps/V @s a function of the volume fraction F of
absorbing material for different values of mp. The top curve corresponds to absorption by graphitic-carbon
(soot). Each curve was obtained by using the exact analytic expressions for a single-layered sphere given in
Sec. II. The numerical procedure employed is the procedure suggested in Ref. (1). We see in Fig. 1 that the
common characteristics of the curves 1s a flatness in the value of cabS/V’which sets in below F = 107(. This
regime corresponds to Rayleigh scattering as can be seen by evaluating mpx,. For F = 10‘7, Mmpxq = 0.4, The
limiting value in each curve is precisely the value one obtains from Eq. 1%. Considering the tiny amount of
absorptive material, this agreement certainly gives confidence in the rumerical stabllity of our computational
procedure outlined in Ref. (1). One also remarks here that Eq. (16) predicts the limiting value to be
essentially proportional to s which is verified in Fig. 1.

Equation glé)zalso shows that the dependence of oabS/V'on,the outer radius Ty is expressed through the
factor 1/|D1\RJ|", vhere Dl(h) is given by
D<h)=z (x )W (mx,) = mort (%509, (mox,) (17
1 1MW MR T b Mo Y MRS

In the limit Xy >> 1, this expression reduces to

(h) — —iX2 . .
D1 =.e ((Sln(m2x2) - im, Cos(mgxz)) (18)
Furthermore, when m, is real,
()2 _ L2 2
VD) = /|14 (m5 - 1) Cos (mox,) (19)
which implies that extrema occur in the value of oy /V whenever m.x, = (2n+1) n/2 or nm where n is an

integer. Fig. 2 shows the plot of oang/V as a function of r, for rq = 0.0046 ym, my = 0.66 with the rest of
the parameters being the same as the earlier ones. Calculations again were carried out based on the exact
expressions of Sec. II and the calculational procedure of Ref. (1). mpxy = 0.077, implying the core is always
in the Rayleigh region. Consequently, Eq. (16) remains valid. In Fig. 2, we see the oscillations predicted
by Eq. (19). The first prominent peak corresponds roughly to mpXp = 3w/,, consistent with the fact that xp 1s
mich greater than 1. Subsequent peaks are given by mpxp = (2ntl) 7/2, n = 2,3,4. This oscillating pattern
continues beyond rp = lum. The distance between any two consecutive peaks is given by Arp = A/(2mp) = 0.19um,
and the ratio of the maximum to the minimum is ms = 1.77. These results are verified in Fig. 2. The mean
value in the region of oscillations is around 23 me/cm3 which 1s to be compared with a maximum value of

13 me/em3 in a polydispersion of carbon particles in air.%:% The maximum value corresponds to a carbon
particle radius of about 0.08um.

In Fig. 3, the flatness approached by the curve near the lower end of the curve is due to the onset of
Rayleigh scattering for the composite particle and 1s described by the expression

2
—541‘rm§ mi - m,
g, |[V=———"—— In { 55 (20)
abs )\(2+m2)2 m2 + 2m2
2 1 2
which is obtained from Eq. (16) after making the appropriate approximation for D§h>. For the parameters con-—

sidered for the curve in Fig. 2, the value from Eg. (20) is 10.3m2/cm3 which is in agreement with the limiting
value indicated by the curve in Fig. 3. However, if rp is decreased further to a value close to riq (see Fig.
B, o bs/V approaches the value corresponding to Rayleligh absorption by carborn particle in air or vacuum
(m2=l?. This limit is given by Eq. (20) with m, = 1. The value 1s 8.4 m?/cm3 and agrees with the curve of
Fig. 4. -

TV, Thin Shell
In this section, we explore the consequences of a thin shell around a spherical particle.
When the shell thickness is small, all the Ricatti-Bessel functions and their derivatives involving the

slze-parsmeter xq in Fas. (3-6) can be expanded around the size parameter x, in a Taylor's expansion. Writing
X1 = Xp — e and utilizing the differential equation

al(z) + (l—n(n+1)/z2)Gn(Z> =0, e

where Gn(z) = wn(z), xn(z) in the expansion, one obtains for real m,
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Tpps = ex? A/ (2m) (22)

where
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Note that the factors iﬁ%Déh)[ and }l/C(h>| are the modulus-squared of the internal field coefficients

corresponding to the a and béh) scattgring amplitudes, respectively. They occur because the shell is
embedded in a homogeneous spherical medium of refractive index mp. When mq = 1, each one of them reduces to 1.
Again, the quantity absorption cross section per unit volume (or mass) of the absorbing material can be
evaluated. For ogpg of Eq. (22), oaps/V is given by

0, /V = —wA/(Axg) , (34)

which is independent of e, and a constant for a given set of parameters: mj, O, X5. For the sake of illus-—
tration, we consider again the case of a water droplet (mp = 1.33-10.0) with graphi%ic—carbon (soot) (mp = 2.0
-i0-66) this time forming a thin shell on the outside. We take A = 0.5um and rp = 5um in the calculations.
The calculations are performed using the exact equations (see Sec. II) and the numerical procedure given for
the general case of a multilayered sphere in Ref. (1). The results are shown In Fig. 5. The top curve
corresponds to the soot material. The other two curves are for different values of the imaginary part of the
refractive index of the shell, as further illustration. In each curve flatness, as expected from Eg. (24), is
reached below F = 10-0, The limiting values in Fig. 5 again agree very well with those predicted by Eq. (24).
In addition, they are seen to be proportional to the imaginary part of the refractive Index mp In agreement
with Eq. (23). The peaks are due to a rescnance explained below.

We next plot Gabs/v as a function of the outer radius rp for a given volume fraction F. We take a low value
such as F = 10-( 50 that Eq. (21) would remain essentially valid during the plot. Eq. (23) shows that as rp is
varied a pattern analogous to Mie scattering for a homogeneous sphere (characterized by parameters mp, x2) will
emerge. In Fig. 6 we do see the ripple structure, which is expected considering the range of rp. The radius
rp is given increments of 0.01 um in the plot. When the increment is reduced to 0.0002 um, we obtain a plot
shown in Fig. 7 for a narrow range of rp centered about 5Sum. More details are visible here than in the pre-
vious plot. The peaks are due to resonances in the homogenecus water sphere. The partial wave amplitudes in
which they occur are indicated in the figure. The peaks of Fig. 5 are due to the effect of' the ayg resonance
in the immediate vicinity of ry = Sum.

V. Double-Layered Sphere

The general case of a double~layered sphere is discussed and shown in Ref. 1. However, our purpose here is
to consider the spherical case of a thin concentric layer of refractive index mp, outer radius rp, embedded in
an otherwise homogeneous sphere of refractive index mq and radius ré. Following the approximation procedure
for the thin shell in the single-layered case, one obtains exactly fhe same expression for ogps (Eg. 22),
assuming mq 1s real. However, the functions Dy n) ang Cn(h) in Eg. 23 are now given by

DY = ) noxg) = e ng) v ()
¢ oo () wr(mxs) - of(xy) o (mpxs) (25)
n 1°n*"37 " 103 n'3 'm1IT30T

The absorption cross section per unit volume of the absorbing (thin-shell) material. is
o, JV = = 1A/(% %) (26)
abs 2 :

Clearly, the value of o S/V will change as the radius rp of the shell 1s varied within the sphere of
radius ry. Assuming that %ﬁe shell is a soot shell (mp = 2.0 - 10.66) within a water droplet (m, = 1.33 -
10.0) of radius 5um, results are shown for o.,,./V as a function of ry in Fig. 8. The volume fraction is
fixed at F = 10-7. Calculations are carried out using the exact expressions and the calculational procedure
of Ref. 1. Exactly the same curve is obtained when Eg. (26) is used. Before carrying out calculations Eq.
(23) in conjurction with Eq. (25) is cast into a form involving logarithmic derivatives and ratios of
Ricatti-Bessel functions discussed in Ref. 1. The reproduction of the curve of Fig. 8 by the perturbation
approach gives further confidence in the calculational procedure of Ref. 1.
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The oscillatory behavior in Fig. 8 is due to the fact that r-» ~ 5um corresponds to the resonance condition
in the partial wave amplitudes a7? and bgg (see Fig. This %eads to high values of the internal field

coefficient modulus-squared, 1/]D and l/}C6%>;2, in Eq. (23). As a result, the oscillatory behavior of

¢n(m1X§) and g (m1xp) shows up promlnently for n = 76 and 66. This occurs appropriately at mixXsv n (see
Fig .

Conclusion

The tests provided here have centered on the ability of the calculational algorithm of Ref. 1 to extract a
very small value of the absorption cross section due to the presence of a tiny amount of an absorbing
material like graphitic carbon (scot) in a water droplet. The absorptive material exists either as a core
or a shell within or on the ocutside of the water droplet. In each case, comparison with the results based
on the perturbative approach shows that the small values of the absorption cross section are accurately
calculated. A low volume fraction such as 10-7 was used specifically to permit a comparison with the
perturbative approach. It should be pointed out, however, that the results given for the shell case are not
practically meaningful as a volume fraction as low as 10— ? corresponds to a layer with thickness much less
than an angstrom.
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