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Analytic expressions for scattering by a single-layered sphere when either the core is tiny or the shell thickness is
small are presented within the framework of a perturbative approach. In this approach, the contribution of the
core or the shell (each acting as a perturbation) to the scattering is separated out, thus facilitating a deeper insight
into the nature of its effect. This is illustrated by the application of the analytic expressions to the well-known
practical case of absorption of visible light by water droplets contaminated with graphitic carbon (soot) in the

atmosphere.

1. INTRODUCTION

In this paper, we consider a perturbative approach to scat-
tering by a single-layered sphere (Fig. 1) when either the
core is tiny or the layer is thin. The approximation proce-
dure leads in each case to the formulation of the scattering
amplitude as the sum of the Mie scattering amplitude corre-
sponding to the voluminous material and the perturbative
correction term resulting from the presence of the other
material in a relatively scant amount. Clearly, this manner
of expressing the scattering amplitudes for the single-lay-
ered sphere permits one to study the effect of the perturbing
material separately in detail.

We begin by stating the exact analytic expressions for
scattering by a single-layered case in Section 2 and subse-
quently deal in detail with the case of a tiny core embedded
at the center of a sphere in Section 3, followed by the case of
athin shell around a spherical particle in Section 4. Section
5 is the conclusion. Appendix A gives the boundary condi-
tions at a thin spherical layer.

The results of our approximation scheme are applied to
the case of absorption of visible light by water droplets
contaminated with graphitic carbon (soot) in the atmo-
sphere. This case is of practical interest with important
implications for climatology and has attracted a great deal of
attention in the past. In 1965, Fenn and Oser! considered
the scattering of a water droplet with a soot core. Subse-
quently, in 1969, Danielson et al.” applied this model in their
study of the transfer of visible radiation through clouds.
Increasing evidence of the presence of soot in the atmo-
sphere has renewed further interest in the impact of soot on
climate 3* Recently, Chylek et al.5 investigated in detail the
effect of soot on the albedo of clouds by using different
models of soot-water mixture. Qur application of the re-
sults to the soot—water mixture, when soot exists as a tiny
core or a thin shell, reveals some novel features of the ab-
sorption process within the framework of such models. Nu-
merical results in the case of the thin-shell case indicate in a
general way that the absorption cross section per unit vol-
ume of an absorbing material, under appropriate conditions,
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could be enhanced by several orders of magnitude. This
result is interesting because of the importance of the value of
this parameter in the studies of the effect of mixing of an
absorbing material with a nonabsorbing or a weakly absorb-
ing material.®

2, SINGLE-LAYERED SPHERE

In general, the partial-wave scattering amplitudes for a
plane wave incident upon a single-layered sphere can be
written as®7

Nn
an = Dn E] (1)
M
b =", 2
=T (2
where
Vnlxs) mapn(mayXs)  max,(myxy) 0
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Fig. 1. A single-layered sphere.

Gulxg) Wplmaxs) X, (mgexy) 0
S"/n(xz) m2¢’n(m2x2) sz/n(mzx‘z) 0
C = N (5))
" 0 Pnlmax;) Xalmax ) Yolmyxy)
0 Mo/ (mox,) mox’,(mox;) myl’ (myx,)
x; = 2wr/\, (7

where \ is the wavelength of the incident wave and ry and ry
are the inner and the outer radii of the shell, respectively.
m1 and my denote the refractive indices of the material in the
core and within the shell, respectively. The Ricatti-Bessel
functions are

Yol2) = 2j,(2),
Xn(2) = —zn,(2),
G,(2) = 2k, P (2), (8)

where j,, n,, and h,® are the spherical Bessel, Neumann,
and Hankel functions of the second kind, respectively.

The extinction cross section, the scattering cross section,
and the absorption cross section are calculated from a, and
b, in the following way:

EPSEN
Ten = o Zl (2n + DRela, +b,),

@

A2 .
Tsea = o Z {2n + 1)( |an|_7 + 1bn{2)7
LT
n=1
N
/
Oabs = Text ™ Tsea = f): z (2”» + 1)

-

n

X [Rela, +b,) = ([a]* +1b,*)], (9)

Ramesh Bhandari

3. TINY CORE

The scattering amplitude of a, of Eq. (1) can be recast in the
form

| L B N, W/N
an n - 2 (10)
1= (8,/a,)D,M/D, "
where
an(h) = Nn(h)/Dn(h) (11)

is the Mie scattering amplitude corresponding to a homoge-
neous sphere characterized by parameters mo, and x5 and

NP =g (2 (mgxs) = mad/ (), (maxo),
D, = 5 ()¢ n(maxg) = myf (20, (maxs),

n(h) = wn(xz))(/n(mgxz) - mg‘///n(xz)Xn(mzxﬁ:

e

(w
=
]

n Falx)x nlmoxg) — ma (%) x,(mgxy),
a, = myd’ (myx)x,(Mexy) = myd(myx)x (max ),
B, = mol/  (myx ), (mox ) — myp (mix Y/, (mox ). (12)

Except for a, and 8, all the expressions above involve xo. We
now assume that |mj|x; « 1 and |mdx; <«< 1. Consequently, in
oy, and 8, we use the fact that, in the limitz — 0,

Yal2) =2""YG,
Vo(2) =(n+ 1)2MGy,,
Xn(2) = Gy, /2",
X n(2) = =nGy, /2" "1, (13)
where
G, =1X3X5...@2n+1),
Gy =1X3X5...(2n—1). (14)
Retaining the most leading terms,
_—(@n+Dn+ 1) (mgx )2 Ym,2 — my?)

Bulan = (G Inm % + m2(n + 1))

(15)

Equation (10) can now be written as
a, = a," {1 = (8,/e) [N, /N, = D, "/D, M. (16)

One can further show that the bracketed expression multiply-
Ing (8p/an) reduces to ~imo/[N, WD, W], As aresult,

a, = a, " +f, (17)
where the correction term f, is
fn = m‘Z(_iﬁn/an)(—l)/[Dn(h)]Q! (18)

with (3,/an) given by Eq. (15). The quantity (—i8,/a,) corre-
sponds to the scattering amplitude for a plane wave traveling
in a continuous homogeneous medium with refractive index m»
and incident upon a tiny homogeneous sphere (parameters m,
and x;) embedded in such a medium. If one further recog-
nizes that /D% = the coefficient associated with the field
inside a homogeneous sphere (parameters m, and x»), the
factor ~[1/D,"™]? in the expression for f, may be interpreted as
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a necessary modification to —i{3,/a,), since the wave incident
upon the core (radius r;) is not the initial plane wave but the
field inside the larger sphere (radius ry). Moreover, the wave
scattered by the core is being detected not within the medium
of refractive index ms but outside the larger sphere where the
refractive index is 1. This also explains the extra factor of m,
in Eq. (18) (see the Fresnel coefficient for transmission of
light®).

In a similar fashion, one shows that the partial-wave scatter-
ing amplitudes b, in the presence of a tiny core can be ex-
pressed as

b,=b,"+g, (19)

where b, is the Mie partial-wave scattering amplitude for a
homogeneous sphere characterized by parameters my and x
and g, is the lowest-order correction term given by

g, = imo(%,/8,)/1C,"1%, (20)
where
—(mgr)?m, Hmy? = 1)
Gl2n+3)

C," is the denominator that occurs in the expression of the
scattering amplitude

(21)

Yn/b, =

b (h) = M (h)/c (h) (22)
and is given by
Cn(h) = m2§n(x2)¢/n(mzx2) - f/n(x2)¢n(m2x2). (23)

The factors (v,/6,) and i/C, have similar interpretations, as
in the case of the correction to a," amplitude.

In the calculation of cross sections given in Egs. (9), the most
leading effect of the core arises from the correction term corre-
sponding to the amplitude a;(®. This correction term f, [see
Eq. (18)] is the Rayleigh-scattering term —i8yx; [see Eq. (15)]
modified as explained before. Setting

fo=064/1 n=12,... (24a)
and
£.=0, n=12.., (24b)
the various cross sections with the lowest-order correction are
32
Text = st + 5 Relfy), (25a)
— (h) + 3;\2 2R (h)}* 25h
Osca = Tsca o = e{[al ] fl}’ (25 )
by 9N ,
Oabs = Tas "+ == Re (fi{l — 2[a,"]7)). (25¢)

4T

The superseript h refers to scattering by a homogeneous sphere
characterized by parameters mao, xa. If this sphere is nonab-
sorbing {oa™ = 0}, Eq. (25¢), with f; given by Eqgs. (18) and
(15), reduces to

(302 l’—(z/sxmzxpg(mf - m;)} 1
my Im —
41p

KZE ’

(26)

o =
b . .
s 2n L m,” + 2m.”
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which corresponds to absorption in the Rayleigh region modi-
fied by factors, as discussed earler.

One of the quantities of interest in the study of the effect of
mixing of absorbing material with a nonabsorbing material is
the absorption cross section per unit volume {(or mass) of the
absorbing material® Denoting the volume of the absorbing
material by V and using Eq. (26), one obtains

—67m.,* (m,® = m,?) )
Taol V = Im{ : } D@D

my® + 2my?

which is independent of the size of the core, a familiar result in
Rayleigh scattering. As an illustration, we consider the ab-
sorption of visible light by a tiny graphitic-carbon (soot) core at
the center of a water droplet. This is a case of practical
interest in the study of scattering of light by fog or clouds, For
calculations, we choose ry = 5 um, A = 0.5 um, ms (water) = 1.33
—10.00, and m; = 2.0 — im;. For the special case of soot, we
take my = 0.66. Figure 2 shows the plot of a,/V as a function
of the volume fraction F of absorbing material for different
values of m;. The top curve corresponds to absorption by
graphitic carbon (soot). Each curve was obtained by using the
exact analytic expressions for a single-layered sphere given in
Section 2. The numerical procedure employed is the proce-
dure suggested in Ref. 7. We see in Fig. 2 that the common
characteristic of the curves is a flatness in the value of o.4/V
that sets in below F = 1077. This regime corresponds to
Rayleigh scattering, as can be seen by evaluating mox;. For F
= 1077, moxy; = 0.4. The limiting value in each curve is precise-
ly the value that one obtains from Eq. (27). This agreement,
we may mention, is also a test of the numerical stability of our
computational procedure outlined in Ref. 7. We also note that
significant deviation from flatness occurs essentially when F
exceeds 1075,

We also remark here that, for small values of my, Eq. (27)
predicts the limiting value to be proportional to m;, which is
verified in Fig. 2. The fact that oq,s/V is independent of m;
above F' = 107 can be explained by the fact that, for such

30 T T T T T T T T

Taps 7 V (M2 /cm3)
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Fig. 2. Absorption cross section of water droplet (ms = 1.33 — {0.0)
per unit volume of the core (my = 2.0 — imy, m; > 0) denoted by oaps/v
as a function of its volume fraction F. The radius of the water
droplet ry = 5 um and the wavelength of light A = 0.5 um. Each
curve Is labeled by the value of m;. m; = 0.66 corresponds to
graphitic carbon (soot).
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Fig. 3. oaps/V as a function of the radius ro of the water droplet.
The soot core {m; = 2.0 — i0.66) has a fixed radius r; = 0.0046 pm.
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Fig. 4. Same as Fig. 3, but for larger water droplets.

volume fractions, the radius of the core is large enough to
absorb essentially all the light incident upon it, regardless of
the imaginary part of the refractive index considered in Fig. 2.
To understand this, we compare the skin depth given by § =
(A m2)/(2rmy) with the radius of the core (absorbing material).
For the values of m; considered in Fig. 2, the largest value of §
(which corresponds to m; = 0.22). {s 0.27 um, whereas the value
of the core radius ry corresponding to F = 107415 0.23 um. The
rough equality of these two quantities shows why the curves of
Fig. 2 merge below F = 10~

Equation (27) also shows that the dependence of s.1s/V on
the outer radius rs is expressed through the factor 1]D;%}2,
where D" is given by

D™ = 6 (xp¥maxs) = mol 1 (820 (myxg). (28)

In the limit o > 1, this expression reduces to
D™ = exp (—ixo)[sin(myxs) — imy cos(maxs)].  (29)
Furthermore, when ms is real,

/1D = UL+ (my° — Dcos*(myx.)], (30)

which implies that extrema occur in the value of v,,/V when-
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ever muXs = (2n + 1)7/2 or maxs = nw, where n is an integer.
Figure 3 shows the plot of o,,/V as a function of r, for r| =
0.0048 um, m; = 0.66, with the rest of the parameters being the
same as the earlier ones. Calculations were again carried out
based on the exact expressions of Section 2 and the calcula-
tional procedure of Ref. 7. mox; = 0.077, implying that the core
is always in the Rayleigh region. Consequently, Eq. (27) re-
mains valid. In Fig. 3, we see the oscillations predicted by Eq.
(30). The first prominent peak corresponds roughly to maxs =
37/2, consistent with the fact that x, is much greater than 1.
Subsequent peaks are given by moxs = 2n 4+ V)n/2, n =2, 3, 4.
This oscillating pattern continues beyond ro = 1 um. InFig. 4,
we have shown this pattern for ro between 3 and 5 um. Atro =
5 um, we get the same value as in Fig. 2. The distance between
any two consecutive peaks is given by Ars = M/(2ms) = 0.19 um,
and the ratio of the maximum to the minimum is ms? = 1.77.
These results are verified in Figs. 3 and 4. It may be men-
tioned that such oscillations dominated by the Rayleigh term
are observed even beyond the value of 0.05 um for the core
radius. For example, for r; = 0.05 um, the mean value in the
region of oscillations is around 25 m%/ecm?®, which is slightly
larger than the mean value corresponding to Fig 4. These
values are to be compared with a maximum value of 13 m?%/cm?
in a polydispersion of carbon particles in air. The maximum
value corresponds to a carbon-particle radius of about
0.08 pm.

It is important to remark here that the prominent peaks of
Figs. 3 and 4 may be regarded as resonances In the internal
field of the water droplet. This is so since each peak is associ-
ated with a complex pole. That is, the denominator D;® of
Eq. (29) has a complex zero in the vicinity of each peak. The
real part of this zero is the same as the position of the peak,
which is given by moxs = (2n + 1)w/2 (x2 > 1). On the other
hand, the imaginary part of each zero has a common value p
given by ,

p = [1/2my)]In[(m, + 1)/(m, ~ 1)]. (31)

If ms > 1, we see at once that p = 1/m.?% with the poles very
close to the real xy axis. The peaks correspondingly become
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Fig. 5. A plot of 1D "2 versus the size parameter xq = 27rs/X
depicting the sharp resonant behavior when the refractive index m»
=50. 1D, is the modulus square of the internal field coefti-
cient associated with the seattering amplitude 2, for a homoge-
nous spherical particle.
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Fig. 6. The lower end of the curve indicates the approach to the
Rayleigh-scattering limit for the composite particle (soot core +
water shell) in air.
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Fig. 7. The lower end of this curve corresponds essentially to Ray-
leigh absorption by the carbon particle (radius r; = 0.0046 xm) in
air.

very narrow [see also Eq. (30)] dropping sharply from their
maximum value of 1 to the minimum value of 1/my?, which
approaches zero rapidly as ms becomes large. This is shown in
Fig. 5. However, for the case under consideration, my = 1.33
and p [given by Eq. (31)] is 0.73. Consequently, the resonance
effect here is weaker compared with the case illustrated in Fig.
5. One also sees from Eqs. (27) and (30) that the maximum
value of o,,/V, which corresponds to the peaks of Fig. 4,
increases with ms, the refractive index of the surrounding
(nonabsorbing) shell. For ms > |my], this maximum value is
proportional to mq?.

In Fig. 6, the flatness approached by the curve near the lower
end of the curve is due to the onset of Rayleigh scattering for
the composite particle and is described by the expression

—547rm.,2 ml2 — 7‘)122
T V= - Im{————— %, (32)

2\2 2 2
M2+ myT) Lmy +2m, j

which is obtained from Eq. (27) after making the appropriate
approximation for D). For the parameters considered for
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the curve in Fig. 4, the value from Eq. (32) is 10.3 m%/cm?,
which is in agreement with the limiting value indicated by the
curve in Fig. 6. However, if ry is decreased further to a value
close to ry (see Fig. 7), o/ V approaches the value correspond-
ing to Rayleigh absorption by carbon particles in air or in
vacuum (my = 1). This limit is given by Eq. (32) with my = 1.
The value is 8.4 m%*cm? and agrees with the curve of Fig. 7.

4. THIN SHELL

In this section, we explore the consequences of a thin shell
around a spherical particle.

When the shell thickness is small, all the Ricatti-Bessel
functions and their derivatives involving the size parameter
x;in Eqgs. (3)-(6) can be expanded around the size parameter
x3. For example,

Yalmaxy) = ¥, (Moxy = mae)

= ¢n(m2xz) — (Mye)y/, (maxsy)

+ (—mye)7 (mox)/2 + . .. (33a)
and
Ilb’n(mQxl) = lil/n(m?xQ - m‘ZE)
= ¥ (moxy) = (meely” (myxy)
+ (—mee)” (myx)/2+ ...,  (33b)
where
€=1xy—x; = 2m(r, — r)/\ (34)

Using the differential equation satisfied by the Ricatti-Bes-
sel functions,

G2y + {1 = n(n +1)/2YG,(z) = 0, (35)

where G,(2) = ¥,(2), x.(2), or {,(2), Egs. (33a) and (33b) can
be recast in the following form:

Y (moxy) = Y, (myxy) — maed’, (mgx,y)

+ my2et (moxo )y, (mex,)/2 + ..., (36a)
l//n(rnixl) = 11///71(’7'7"2”%2) - m‘.Zetn(mZxZ)lf//n(mZx?‘)

+ My e[t (Mox Wnlmex) /2 + ..., (36b)

where
ta(myxy) = nln + 1)/(max,)? — 1. (37)

Thus the functions y¥,(msx;) and ¢/ ,(max;) can each be ex-
pressed in a power series involving only the function
L (msaxs) and its single derivative ¢/, (mx2). A similar anal-
ysis yields a power series in ¢ for each of the other functions
Xnlmoxi), xn(mexy), Ynlmix,), and ¢,(myx4) that occur in
the analytical expressions for a, and b, [see Egs. (1)-(6)]. In
what follows, we assume that the shell is so thin that only the
first-order term in ¢ need be retained in all the series expan-
sions. With this assumption in mind, the numerator Ny
[see Egs. (1) and (3)] takes the form
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Valxy)  ma,(myxy) My X, (Mg )
\///n(xz) Wn(mng) X’n(mgxg)
N =
0 (Mol (mgxs) [max,(moxs)
—myZey/ ,(maxs)] —mylex’ (myx,))
0 [V (mygxg) — mae [X'n(magxg) = moe
ta(moxg)¥,(myxg)] £ (mexy) X, (moxy)]

The above determinant can be written as the sum of four 4 X
4 determinants, one of which is independent of ¢, two of
which are linear in ¢, and the remaining one is of order €.
Ignoring the last one, simplification of the others results in
the following expression for Np:

N, =m,N,® — e(my* = m R, (39)

where
N = (mx¥n(xs) = mga(mizg¥n(xg),  (392)

R, = [n(n + 1)/(my?m 2.y, (xa) ¥, (myx,)
T (¥ n(myxy). (39b)
Similarly,

D, = myD, " — e(my® — m;")S,,, {40)

where

D, =y (mx)t(x,) — mp,(mix) ¢ (xy),  (40a)

S, = [n(n + D/(my*m x5 (ks (myx,)

+ g‘,n(x.?)"l/n(mle)' (40b)
To first order in ¢,
a,=N,/D, =a,? + e, (41)
where
an(h) = Nn(h)/Dn(h) (42)
and
a, = =ilmy® = m) ¥/ 5(myx,))?
+ [n(n + 1)/(myx,D)] [, (myx 13D, ]2 (43)

In a similar fashion, the determinantal form of the scatter-
ing amplitude b, [Eqgs. {2), (5}, and (6)] reduces to

b,=b "4, (44)
where _
b, W =M W/C ), (45)
M, = myl (myx¥,(x9) = ¥(mx)¥ ,(x),  (46)
Co = myy (myxg) 6, () ~ ¥, (M) P, (xa), (47)
and |

by = —ilmy® = m N[y, lmx )1 A/(C, T (48)
a,™ and b, are the scattering amplitudes for a homoge-
necus sphere characterized by parameters m, and x.. &, and
b, represent the correction terms to first order ine. It may
be remarked here that these correction terms can also be
obtained from a direct application of the set of boundary

{mﬂ!’n(mlxg)
—mlgew’n(mlx 2)]
[¥/a(myxg) = mye

5n(m1x2)¢'n(m1x2)]
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0

0
{38)

conditions valid for a thin spherical layer. These boundary
conditions are derived in Appendix A.
The various cross sections are now given by

g = Uext(h) + 6‘%ex‘c’ (49)

ext

o h = —>\—.—- 2 (21’1 + l.)Re[an(h) + bn(h)]: (503)

ext or
A2 .
Text = 5 Z (2n + DRela, + b,), (50b)
Usca = Usca(h) + é&scw (51)
where

(r) S (h)2 (h)y2
Osca ?2; (Qn + 1)[\% l + ]bn ] ]9 (523)

A2 N 5
Boes = 5 z (2n + 1)2 Rela,a, ™™ + b,b,*], (52b)

Oabs — Text ~ Usca
) () A2
= {0ext” ~ Tea”] +62~ﬂ’2(2n+ 1)
n
X Refa,[1 — 2a,™*] + b, [1 — 26, W*]). (53)

If my is assumed to be real, Eq. (53) reduces to
Taps = —ENZA/(27), (54)

where

A= Z ©@n + DIm[(m,? — m, AU (myxe)]?

n

+ [n(n + 1/(my2x, )] W (myx )13/ 1D, )2
+ [, (myx) /| C, M B)]. (55)

Note that the tactors 1/] D, 2 and |1/C,™|? are the modulus
squared of the internal field coefficients corresponding to
the a,"™ and the b, scattering amplitudes, respectively.
They occur because the shell is embedded in a homogeneous
spherical medium of refractive index m;. When m; = 1,
each one of them reduces to 1. Again, the quantity absorp-
tion cross section per unit volume {or mass) of the absorbing
material can be evaluated. For o, of Eq. (54), oa/V is
given by

Gans V = A/ (N0, (56)

which is independent of ¢, and a constant for a given set of
parameters: mq, mo, and xo. For the sake of illustration, we
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Fig. 8. Absorption cross section of water droplet (m; = 1.33 —i0.0)
per unit volume of the shell (my = 2.0 —im;, m; > 0) denoted by
oabs/ V as a function of its volume fraction F. The radius of the
water droplet ro = 5 um and the wavelength of light A = 0.5 um.
Each curve is labeled by the value of m;. m; = 0.66 corresponds to
graphitic carbon (soot).
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Fig. 9. Ripple structure in o,,,/V for a soot-coated water droplet
that is determined by the resonances in the internal field of a
homogeneous water droplet of the same size. The volume fraction
F of soot is 10~7. The step size is 1072 um.

consider again the case of a water droplet (m; = 1.33 — {0.0)
with graphitic carbon (soot) (ms = 2.0 — {0.86) this time
forming a thin shell on the outside. Wetake A = 0.5 ym and
ro = 5 um in the calculations. The calculations are per-
formed by using the exact equations (see Section 2) and the
numerical procedure given for the general case of a multilay-
ered sphere in Ref. 7. The results are shown in Fig. 8. The
top curve corresponds to the soot material. The other two
curves are for different values of the imaginary part of the
refractive index of the shell, as a further illustration. In
each curve flatness is reached below F = 1078, as expected
from Eq. (563). The limiting values in Fig. 8 again agree very
well with those predicted by Eq. (56). In addition, they are
seen to be proportional to the imaginary part of the refrac-
tive index mq in agreement with Eq. (55). The peaks? are
due to a resonance explained below.
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Fig. 10. Same as Fig. 9, except that the step size is 4 X 10~* um.
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Fig.11. Same as Fig. 10, except that a further reduction in step size
to 2 X 107* um reveals three more peaks labeled 1, 2, and 3. Peak 2
lies just beyond 5 um.
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Fig. 12. Peak 2 of Fig. 11 shown in greater detail. It is due to a
resonarnce in the electric mode, n = 76.
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Fig.13. Same as Fig. 12, except that F = 10~ (flat curve), F = 1075
(the broad-peak curve), F = 1078 (the narrow-peak curve}.
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Fig. 14. Same as Fig. 11, except that F = 1074,

We next plot o4,/ V as a function of the outer radius r for
a given volume fraction F. We take a low value such as F' =
1077 so that Eq. (56) would remain essentially valid during
the plot. Equation (54) shows that, as rs is varied, a pattern
analogous to Mie scattering for a homogenous sphere (char-
acterized by parameters mo and x9) will emerge. In Fig. 9 we
do see the ripple structure, which is to be expected consider-
ing the range of r5. The radius rs is given increments of 0.01
wm in the plot. When the increment is reduced to 0.0004
um, we obtain a plot shown in Fig. 10 for a narrow range of r»
centered about 5 um. More details are visible here than in
the previous plot. However, the value of gaps/V for rs = 5 um
read from this plot does not agree with the value given by the
plotin Fig. 8 Thereasonisthatrs =5 um lies at the tailof a
very narrow peak that is not revealed in Fig. 10. Further
reduction of step size to 0.0002 um uncovers this peak la-
beled 2in Fig. 11. Peaks labeled 1 and 3, not visible earlier,
also appear in this figure. Peak 2 is shown in greater detail
in Fig. 12, where the step size is 107% um. It has been
identified as an enhancement in the electric mode of order n
= 76. Exclusion of this partial-wave scattering amplitude
results in the disappearance of this peak from Fig. 11.
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In Fig. 12, we see that the peak rises beyond 500 m?/em?.
In fact, further calculations show that its value exceeds
22,000 m%/em?, Narrow peaks such as those in Figs. 11 or 12
are a characteristic of very thin shells, which are due to the
sharp resonant behavior of the internal field coefficients,
expressed in Eq. (33) through the denominators | D,M|2 and
|C, 812, This feature is illustrated in Fig. 13, where the flat
curve corresponds to a volume fraction F of 1074 (or a thick-
ness of 5 X 10743 um). As F is reduced by a factor of 10
through 1078, which corresponds to a thickness of 5 X 10~/
3 um, which is less than the width of the peak, the narrow
peak of Fig. 12 is resurrected. In Fig. 14 is given a plot of
aans/ V for F = 107* over a range of radius r» corresponding to
the one in Fig. 11. Peakslabeled 1,2, and 3 in Fig. 11 are no
longer present in Fig. 14. The sharp but relatively broader
peaks of Fig. 11 are present but with greatly diminished
sizes. A further reduction of F to 1072 also causes their
disappearance. Thus the full spectrum of peaks revealed by
Eq. (55) corresponding to first-order perturbation gradually
diminishes as the shell thickness increases. Eventually, as
the soot fills the entire volume, one obtains the plot corre-
sponding to a homogeneous carbon particle in air (or in
vacuum). Except for a broad peak (centered around r =
0.08 um), oans/V is a smoothly varying function of the radius
of the particle in this plot.

5. CONCLUSION

Within a perturbative approach, we have provided analytic
expressions for scattering by a single-layered sphere when
either the core is tiny or the layer is thin. In the case of the
tiny core, it is shown that the correction to Mie scattering
owing to the presence of the core is a modified Rayleigh term
determined by an incident wave that is the internal field
corresponding to a homogeneous sphere.  'When the shell is
nonabsorbing and the core absorbing, the absorption cross
section for the composite particle is ¢alculated and applied
to the case of absorption of visible light (A\ = 0.5 um) by a
water droplet containing a tiny graphitic-carbon (soot) core.
Results for the absorption cross section per unit volume of
soot versus the radius of the water droplet predict oscilla-
tions, which are identified with resonances in the internal
field of the nonabsorbing water droplet, corresponding to
the electric-dipole mode (n = 1). On the other hand, in the
case of the thin shell, the internal coefficients corresponding
to all the modes of oscillation determine the correction term.
When applied to the case of a water droplet with a soot shell,
narrow peaks analogous to the ripple structurel® in Mie
scattering become visible in the absorption cross section per
unit volume as a function of the radius r5. These peaks are
due to resonances in the internal field of the nonabsorbing
water droplet. This ripple structure is not to be confused
with the ripple structure in the absorption cross section of a
weakly absorbing homogeneous sphere.!! As the shell
thickness increases, the observed ripple structure dies grad-
ually. Inother words, the perturbation procedure revealing
the peaks is no longer valid. )

Finally, we remark that it would be interesting to make an
experimental observation of the aforementioned narrow
peaks, as il would be an explicit proof of the narrow internal
resonance predicted by Mie theory. In the water—soot ex-
ample considered in this paper, these peaks appear for vol-
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ume fractions <10~* for a water droplet of radius ry = 5 um,
too low to correspond to a physically possible thickness of
the soot layer. However, if we note that the equations de-
pend on the size parameter xz (= 2rry/A), an experimental
verification of the narrow peaks can be made possible in a
laboratory with the use of longer wavelengths (e.g., micro-
waves), provided that a different pair of materials, one ab-
sorbing (for the shell) and the other nonabsorbing or weakly
absorbing (for the core), exists. The requirement that x; >
1 to unravel the peaks is easily satisified in this case by
scaling the radii of the single-layered sphere accordingly.
As a consequence of these large radii, physically meaningful
thicknesses for the layer are then possible for low volume
fractions of the absorbing material.

APPENDIX A: BOUNDARY CONDITIONS AT A
THIN SPHERICAL LAYER

Approximate boundary conditions at a thin spherical layer
immersed in a vacuum were given by Andreasen!21? several
years ago, in connection with the study of scattering proper-
ties of a dielectric bubble. Scattering amplitudes (also ap-
proximate) were subsequently derived from these boundary
conditions. In this appendix, we derive the boundary con-
ditions in their complete form and in a very general way.
These boundary conditions are found to lead to precisely the
same form of analytic expressions for scattering amplitudes
for a single-layered sphere with a thin shell as those given in
Section 4 of this paper.

Figure 15 shows a tiny portion of a spherical shell of
refractive index mgy separating the core of radius r; and
refractive index m; from the external medium of refractive
index ms. The tangential components of the fields at the
two interfaces (in particular, at points a and b in Fig. 15)
satisfy the following boundary conditions:

A X (B, (1) — E, (r,)] =0, (Ala)
A X [B, (r) —E, (r))] =0, (Alb)
A X [Hy (ry) — H, (ry)] =0, (A2a)
AX{H,y (r) —H, (r)] =0, (A2b)

where E; and similarly H; refer to the field inside medium .
A is the unit vector defining the common directions of vec-
tors r; and r; that correspond to some angle 8, ¢ in a three-
dimensional coordinate system. 8 and ¢ are the other unit
vectors tangential to the spherical surface. In what follows,
we assume that Ar = ry — ry is very small.

We consider the set of Egs. (A2a) and (A2b) first and
observe that Ha(x;) can be written to first order in Ar as

H,y(r,) = Hy(r,) — Ar - VH,(ry). (A3a)
In a similar way, we can write
H,(r) = H,(ry) — Ar - VH,(r,), (A3b)

where Hi(r») is the extrapolation of Hi(ry) tor = rs. These
results in conjunction with Fqs. (A2a) and (A2b) then give

A X [Hylr,) = Hy(e)] = A X [(2 - V)(H, = Hl,ey, (A4)
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Use of the vector identity

TA-B)=(B-VVA+{(A-V)IB+B
X(VXA)+AX(VXB) (AB)

and the Maxwell equation
vV X H = i(w/c)E (A6)
further renders Eq. (A4) into the following form:

A X [Hy(ry) — Hy(ry] = Ar(iw/o)in X {eBy(ry) — e, E(ro)]}

XA+ ArA X V[(H, - H,) 4]

r=r,

~ (Ar/ry) A X [Hy(ry) — H,(r,)).
(A7)

Note that Eq. (A6) assumes a time dependence of the form
expliwt) for the fields. Also, ¢; denotes the dielectric con-
stant of medium j. The second term in Eq. (A7) involves the
difference in the tangential components of the gradient of H,
(the radial component of H) evaluated at r = ro. Using Eq.
(Ala) and the continuity of the radial component of uH at
the interface r = ry (1 denotes permeability), Eq. (A7) to
first order in Ar can then be reexpressed as follows:

A X [Hy(ry) = H (ry)] = Ar(iw/c)in X [e,E4(ry) — ¢ E(ry)]
+ Arpg(1/py = 1/un
X V(Hy A1) puy., (A8)

A similar analysis, beginning with Eqgs. (Ala) and (Alb),
yields
A X [Eqry) — E(r)] = Ar(—iw/c)

X AR X [ Hy(ry) — i Hy(r) ]} X 72

+ Arey(Ley — 1/e)n X V(Eg - A1) oy

(A9)

Equations (A8) and (A9) constitute a pair of boundary con-
ditions applied at the outer surface of a thin shell of refrac-
tive index m» separating two media, the outer one of refrac-
tive index mg and the inner of refractive index m{. m; =
V%’ i =1,2,3. Thisisto be contrasted with the set of four
conditions, Eqs. (Ala) and (Alb) and Eqgs. (A2a) and (A2b),
that normally need to be satisfied in the general case of a

=1

Fig. 15. Geometry of a spherical shell of refractive index my. The
refractive indices of the core and the external medium are m,; and
ms, respectively.
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spherical layer. As expected, the right-hand sides of Eqgs.
(A8) and (A9) reduce to zero when uy = u; and e; = ¢;. Inthe
case of us = u1, Egs. (A8) and (A9) reduce to

A X [Hy(ry) — Hy(r,)] = Ar(iw/c)
X X [eEq(r,) — 6B ()]} X A,
(A10)

A X [Ey(rsy) — Eq(ry)] = Areg(1/e; — 1/ey)
X X V(E;g - 1)z, {A11)

The first term on the right-hand side of Eq. (A9) becomes of
order (Ar)2 by virtue of Eq. (A10) and is therefore dropped in
Eq. (A11). When Eqgs. (A10) and (A11) are applied to scat-
tering in vacuum (ms = 1) by a single-layered sphere with a
thin shell with u; = us = 1, one obtains precisely the same
analytic expressions for scattering amplitudes as those ob-
tained earlier in Section 4 of this paper. It isthe right-hand
side of Eq. (A11) that is responsible for the term containing
the factor n{n + 1)/(m.2x52?) in the analytic expression for 4,,
in Eq. (43). x5 = 27ro/A. If mgis very large, this term can be
ignored. In Eq. (All), it corresponds to setting the right-
hand side to zero. This result in conjunction with Eq. (A10)
then implies that

A X [Hyry) — Hy(ry)] = (Ar)(w/e)e, — ¢) (A X Ey) X 7.(A12)

This approximate boundary condition with ¢; = 1 acquires
the same form as the one given by Andreasen!? for a dielec-
tric bubble in vacuum.

In short, we have given the precise form of the boundary
conditions at a thin spherical layer [Egs. (A10) and (A11)].
This derivation is based on a formal treatment and is exact
up to first order in shell thickness. Although we have dis-
cussed the results of its application to a single-layered case,
it can be applied to a thin layer within a multilayered sphere.
For example, the partial-wave scattering amplitudes for a
thin carbon shell embedded within a water droplet, to first
order in the shell thickness, may be obtained by the direct
application of Egs. (A10) and (Al1), Equation (A12) is an
approximate form of the type given earlier by Andreasen!?
using a less formal approach. Form; = 1.33 —i0.0, my = 1.0
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—10.66, my = 1.0, A = 0.5 um, ry varying from 0.01 to 10 um,
and a fixed volume fraction of 107% for the layer, calculations
for the absorption cross section based on Eq. (Al12) give
errors from 20 to 40%. 1If, however, ms is changed to 5.0 —
i0.66, the error is of the order of 0.1%.
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