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The paper! by Chylek et al. appeared recently in Applied
Optics. The internal electric field of a dielectric sphere is a
popular topic which has received a lot of attention in the
recent past.?3 The purpose of this Letter is to comment on

_ certain features of internal electric field intensity reported in
Ref. 1.

We first note that in Ref. 1 light incident on a dielectric
sphere is assumed to be unpolarized. If the direction of
incident beam is taken to be the z axis, the unpolarized light
can be considered to be an incoherent equal mixture of light
polarized in the x and y directions. Since the x and ¥
directions for the polarization of incident light yield similar
results in the determination of electric field intensity |E[2, we
shall for the purpose of discussion assume that the incident
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light (of unit amplitude) is polarized in the x direction only.
With this assumption in mind, we now find that the internal
electric field E along the diameter of the dielectric sphere
parallel to the direction of propagation (the z direction) is
given by

E= ex"(“"t) Z (Fiy'@n + D[d, g, (mkr)

+ ic g, (mkr)]x (1)

according as cosf = £1. We are following the notation of van
de Hulst.* y, and ¢, are the familiar Ricatti-Bessel func-
tions. k = 2%/A, where \ is the wavelength of incident
radiation, w is the angular frequency of radiation, m is the
refractive index of the dielectric sphere. ¢, and d, are the
internal scattering coefficients which depend sensitively on
the refractive index m and the size parameter (= 2wa/\) of
the sphere. ais the radius of the sphere. At sharp resonant
conditions, either the ¢, or d, coefficient becomes extremely
large, giving rise to huge peaks near r = ¢ in the internal
electric field intensity plots along the above diameter.1:3 In
Ref. 1, a resonance in ¢, or d, is denoted by TM,,; or TE,,
respectively, where n is the partial-wave number and ! is the
order of the resonance within the partial wave. Clearly,
from Eq. (1), a resonance in a TE or TM mode will make a
significant contribution in terms of huge peaks when
Yn(mkr) or gb;(mkr) starts to assume its oscillatory character.
This occurs when mkr ~ n or, equivalently, when r/a ~ n/mx.
Chylek et al. have given an empirical formula for the position
of the first huge peak. The formula is devoid of any explicit

dependence on the refractive index m as it is based on one
particular case studied by them. Therefore, because of this
lack of generality, it is not useful. We now show that analyt-
lc expressions giving the locations of the peaks do exist.
Confining our attention first to a resonance in the ¢, coeffi-
cient (or the TM mode) and ignoring the relatively small
contribution of the other (nonresonating) terms in the series
[Eq. (1)], we see that the first huge peak in the plot of [E[?
along the z axis corresponds to the first maximum or mini-
mum in the functlon \b (mkr) In general, if rpr; denotes the
Jth extremum of 1,0 then 1// "(mkry ;) = 0orequivalently from
the Riccati-Bessel equation: ¢,(2) + [1 — n(n + 1)/22]y,(2)

=0,Yn(mkry;) [n(n+1)/(mkryj)2—1] = 0. The firstzero of
¢ (mkr), or the position of the first peak, is given by setting
the second factor equal to zero or equivalently by

fagg =ryfa=ynln+ 1)/(mx), (2a)

where x = 27a/\ is the size parameter of the dielectric sphere.
The position of succeeding peaks rp; when [ (the order of the
resonance) > 1 would be given by the zeros of y,,(mkr),i.e., by

fagg = rujla =, —/(mx),  j=23,...1, (2b)

where ,,, denotes the vth zero of the ¥, function. Similarly,
for a TE resonance, the extrema of y,,(mkr) in Eq. (1) define
the position of the peaks in the |E|? plot along the z axis. In
other words, if r ; denotes the position of the jth peak due to
a TE, ; resonance,
fej=rgja=,;/(mx), j=12,...1 3)
where ,, ; denotes the value of the jth zero of the derivative
of the ¥, function. Since the extrema of the ¥, function are
the zeros of the y,, function, Eq. (1) also implies that the
peaks in the TE mode resonance will coincide with the mini-
ma of the TM mode resonance for the same partial wave
number n, provided the plot of |E[2 vs r, the radial distance.

If, however, the values of x at which the TE,; and TM,,;
resonances occur are very close to each other, the above
coincidence would occur in the plot of |[E{2vs r/a also. Thisis
verified in Figs. 2 and 3 of Ref. 1 where (TE)s3; and (TM)s3 1
are displayed. The minimum is not exactly zero® since the
contribution of the nonresonating terms in Eq. (1) are also
included in the calculation of |E|2. Nevertheless, these non-
resonating terms, which constitute a background, do not
affect the positions of the peaks given by the aforementioned
equations since the resonance is sharp. This overlapping of
the maxima and minima, as discussed above, also explains
the fact that a peak in the TM mode occurs at a value of r less
than that for the corresponding peak in TE mode (see Figs. 2
and 3 of Ref. 1).

The formulas we have given, Egs. (2a, 2b), and (3) are
general equations valid for arbitrary values of m,n,x, where x
is the size parameter corresponding to resonant conditions.
Their forms, at first, might suggest that fas; or fg; decreases
inversely as the magnitude of the refractive index m. But
investigations show that the size parameter x corresponding
to the first resonance (I = 1) is related to the partial wave
number n through the relation n = amx, where « is a numeri-
cal factor less than 1. For m in the 1.1-1.7 range and partial
wave number n in the 10-76 range, we find « varying from
~0.7 to ~0.9. The large values are obtained when x is large
and m is small. From Eq. (2a), we clearly see that fyr1 =~ «,
indicating that the huge peaks that appear in the internal
field intensity plots at resonant conditions are always con-
fined near the surface. From the foregoing relation connect-
ing nto m,x, we also find that for a given partial wave number
n, the size parameter x of a resonance is essentially inversely
proportional to the refractive index m. Also we observed
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Fig. 1. Source functions S (= |El2) averaged over angles for the
TMss,; resonance of Ref. 1. r is the radial distance, and a is the
radius of the sphere. The amplitude of incident light is unity.
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Fig. 2. Source function S for the size parameter x = 40.7960 of Ref.
1, but for refractive index, m = 1.77. It is calculated for the z axis,
the direction of propagation of incident light.
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that the resonance became thinner as m increased for a given
value of n, implying that the imaginary part of the complex
pole becomes smaller as m becomes larger. In fact,as m —
o, x — 0, and in this limit the poles lie on the real axis. This
case is discussed very elegantly by van de Hulst.*

It should be emphasized here that the second apparent
peak at r = a in the TM33 1 mode of Ref. 1 is not strictly a peak
because it isnot a conventional maximum. Therise after the
first minimum is a consequence of the oscillatory behavior of
the ¢, (mkr) function as explained above. The value of the
source function at the interface (r/a = 1), both inside and
outside the particle, is the same due to the continuity of the
electric field, since it is tangential at r = a in the equatorial
plane.® The second peak is at best a cusp peak. We disagree
with the authors when they say: “Eachpeak. .. corresponds
to a spherical shell of high value of the source function.” To
determine whether a high peak corresponds to a shell of high
electric field intensity, it is necessary to calculate |E? as a
function of r averaged over angles. In Fig. 1, we show a plot
of |E|§Vg vs r for the THs3 ; resonance of Ref. 1. There is only
one large peak within the particle, and no minimum and a
rise is observed as in the |E|2 vs z-axis plot. The absence of
these features in Fig. 1 is due to the smearing effect of the
radial component of the electric field. The presence of the
radial component is also manifested in the discontinuity at r
= a. The intensity just outside is larger because the radial
component of the electric field just outside is increased by
the factor of m, the refractive index of the sphere. The cusp
peaks clearly do not give rise to a separate shell of high

intensity. If, however, the discontinuity peak of Fig. 1is to_

be regarded as a second shell, it should be emphasized that it
is due to the discontinuous nature of the radial component of
the electric field and not the cusp peaks. We also point out
here that the sharp downward decline in the electric field
intensity outside the sphere at resonant conditions, observed
in each of Figs. 2-4 of Ref. 1, is mathematically a conse-
quence of the spherical Bessel function of the second kind
which is decreasing rapidly at r = a from its infinite value at r
=0.

At nonresonant conditions, the presence of a large broad
peak outside the particle (due to the focusing effect) in Figs.
2--4 of Ref. 1 is an interesting result, characteristic of parti-
cles with low refractive indices only. When the value of the
refractive index is low, the focusing effect is not sharp, and
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there is a large broad peak in the forward direction outside
the particle. In addition, one also sees very large wiggles
inside the particle which apparently are due to the rays being
focused after internal reflection from the back side of the
particle (see also Ref. 3). When the refractive index is in-
creased, the broad peak becomes larger and narrower and
penetrates the surface r = a. Figure 2 shows the partial
penetration of the broad peak of Ref. 1 when m is increased to
1.77. The part of the broad peak inside the particle has
broken up into wiggles (of corresponding height) due to
internal interference effects. As m is increased further, the
part of the peak lying outside moves inward breaking up also
into wiggles with increasing penetration. Finally, the whole
entity (the collection of high wiggles) lying inside, which
grows in size and becomes narrower, moves toward the center
of the particle with increasing m. InFig. 2, one also notices a
group of smaller peaks to the left of the center of the particle.
This set of peaks is always present. Our calculations also
show that they move toward the center of the particle as m is
increased. This behavior is consistent with the focusing of
rays after internal reflection from the back side of the parti-
cle.
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5. Infact, the minimum following the first large peak in Fig. 3 of Ref.
1 is significantly different from zero because of the insufficient
smallness of the step size to reveal the local details.

6. This is easily seen from the analytic expressions for the electric
field intensity within the equatorial plane. The equatorial plane
is the yz plane in our discussion.



