FA” CM

Mo DELING AND SiMU LATION (ON

THE PROCEEDINGS OF THE COMMUMICATION NETWCRKS

FEAENCE (THESOCIETY Foi CoHPOTER
SIMULATION) . AN VLD /A
PHYSICAL DIVERSITY VERSUS COST ALGORITHM FOR l\/IEI’W(/ égxfs/(’ V) / SAN DIES D, (A

(TAN 1417, 1996 .

Ramesh Bhandari
AT&T Bell Laboratories, Rm. 2B-410A
Holmdel, New Jersey 07733
r2b@hostare.att.com

Key Words: Telecommunications; Optimization; Network;
Disjoint Paths; Algorithms

ABSTRACT

In this paper, we give the development of an algorithm that
calculates the cost of providing business services over two paths
as a function of physical diversity. Physical diversity refers to
physical-disjointness between the pair of paths connecting the
source and the destination nodes in a network described by
nodes and links. The algorithm is derived from a shortest pair of
node-disjoint paths algorithm, which is first modified via
assignment of two large parameters to obtain a maximally-
disjoint paths algorithm. This algorithm then yields the number
of common nodes and links when full disjointness is not
possible. When the two parameters - initially fixed at large
values - are now allowed to vary freely, an algorithm results
which permits physical-diversity violations, i.c., it permits the
two paths to have common nodes and links, depending upon the
values of the parameters. The algorithm provides evaluation of
savings to a customer when such diversity violations are
allowed.

1. INTRODUCTION

As optical technology continues to be deployed, and the massive
bandwidth of the fiber is beginning to be utilized on a large
scale for provisioning of different types of services, physical
diversity assumes greater importance, and may become the
minimal requirement for robustness in telecommunication
networks. For networks considered here, physical diversity
refers to two disjoint paths between a given pair of nodes in the
network. For a business customer who cannot afford any delay in
ransmission of his data, physical diversity ensures continuity of
service in the event of a link or node failure. However, physical
diversity also implies increased cost to the customer since two
physically-disjoint circuits must be reserved for the customer. If,
for the moment, we assume that the cost of providing service is
proportional to the length of the path, then the cost to the
customer is likely to be at least doubled. This is due to the fact
that the sum of the length of two disjoint paths is equal to or
greater than twice the length of the single (shortest) path
between the two given nodes in the network. What happens if
the customer cannot afford to pay such increased costs, yet
desire a high level of physical-diversity, i.e., can we provide him
with two pathe that are nearly physically-disjoint at a cost
significantly reduced in comparison to the cost for full diversity?

This paper gives the development of an algorithm that calculates
cost as a function of physical-diversity. The algorithm then
permits evaluation of savings when the two paths sought are

allowed to have partial overlaps. Clearly, the cost of two paths s
maximal when complete (100%) diversity is desired, and ig
minimal in the extreme case of the two circuits traversing the
same (shortest) path, which is a case of zero diversity.
Therefore, when the level of diversity is less than 100%, the cost
lies between the above two extreme cases. In fact, situations can
arise where, depending upon the network characteristics, the
reduction in cost can be significant for a very small violation ip
physical diversity. This fact is illustrated with reference to
Figure 1, which shows a network in which physically-disjoint

E 10 F

A 3% g '&o 3)

Figure 1 A network of nodes and links; the numbers
represent the cost of the links.

paths are desired between various pairs of nodes. For the pair of
nodes, A and D, ABCD is the shortest (least cost) path with a
cost of 3+143=7 units. The two physically-disjoint paths
between nodes A and D are ABCD and AEFD with a total cost
of 7+14=21 units. If we permit diversity violation, then
provisioning of two circuits, one on the path ABCD and the
other on the path AEBCFD, would result in the short link BC in
common with a total cost of 7+9=16 units, which is 5 units less
than the 21 unit cost for full diversity. Similarly, from B to F,
the cost of the shortest pair of disjoint paths (BCF,BEF) is 3+12
=15 units, while the two paths (BCF,BCDF), having the short
link BC in common, cost only 3+6=9 units. Thus, provisioning
of two circuits on the latter pair of paths is cheaper by (15-9)/15
X 100% = 40%. ‘

The construction of the physical-diversity versus cost algorithm
is based on the generalization of the algorithm for the shortest
pair of node-disjoint paths between a given pair of nodes in the
network. Given the network graph, G(V,L), where N and L
denote the sets of nodes and links in the network, node-
disjointness automatically implies link disjointness, and thus
physical-disjointness between the two paths (except for the
common end point nodes). In Section 2, we review the node-
disjointness algorithm given earlier by the author (Bhandari
1994), and develop an implementation scheme in Section 3.
This implementation scheme for the node-disjointness algorithm
then automatically leads to the algorithm for maximally-disjoint
paths, useful in situations where physical-diversity is not
achievable due to the inherent nature of the network. For
example, deletion of link EF in Figure | leads to the absence of

258

complete disjointness in paths between pairs of nodes such as
AD), (AF), etc. For such pairs of nodes, link BC (also called a
bridge) is necessarily common to the two paths found. In
general, when total physical disjointness does not exist, the
developed algorithm finds two paths that have the least total cost
and minimum number of common nodes and links. Finally, in
Section 4, we show how the physical-diversity versus cost
algorithm naturally evolves from it. The algorithm is fast and
works in polynomial time over a mesh network.

2. SHORTEST PAIR OF NODE-DISJOINT PATHS
ALGORITHM

Because the network under consideration is bidirectional, the
graph representing the network is undirected, i.e., each link of
the network graph is equivalent to two oppositely directed arcs
of length equal to the length of the given link. For example, in
Figure 1, link AB is equivalent to two arcs, AB and BA, each of
length equal to 3, the length of link AB.

Algorithm 1 : For the graph, G(N,L), the shortest pair of node
disjoint paths between a given pair of nodes may be found as
Sollows:

1. For the given pair of nodes, A and Z, under consideration,
find the shortest path using the algorithm given in Appendix A.
As an example, refer to Figure 2a. Denote the length of the
shortest path found by d(AZ), where A is the source node and Z
the destination node.

D
O

Figure 2a Network of nodes and links; the shortest path is
assumed to be ABCZ with A and Z the source and destination
neodes, respectively.

2. Delete the forward arc of each link of the shortest path from A

. D E
O O

Figure 2b Network with shortest path links replaced with
negative arcs directed towards source node, A.

259

to Z, ie., delete arcs AB, BC, and CZ in Figure 2a. This
deletion leaves arcs pointing in the backward direction, i.e., in
the direction towards the source node A. Make the length of
these arcs (BA, CB, ZC in Figure 2b) negative

3. Split each node on the shortest path (except the end point
nodes) into two colocated subnodes, joined by an arc of length
zero and directed towards the source node (in Figure 2c, arcs
BB’ and CC’ are each of zero length). Replace external links
connected to nodes on the shortest path by two arcs of the same
and original length, and connected to the two subnodes as shown
in Figure 2¢; ¢.g., link DB in Figure 2b is split into arcs DB and
DB’, and, similarly, links FB, GC, and EC.

Figure 2¢ Network graph modified by node-splitting

4. Find the shortest path from A to Z in the modified graph (see
Figure 2c¢), using the algorithm given in Appendix A; denote its
length by d’'(AZ).

5. Remove the zero length arcs, i.e., coalesce the subnodes into
their parent nodes. Replace the negative arcs (see Figure 2b)
with the original links (of positive length). Remove overlapping
links of the two paths found (the first in Step 1 and the second
in Step 4) to obtain the shortest pair of node-disjoint paths in the
original graph (Figure 2a).

Step 2 above permits interlacing of the second path (found in
Step 4) with the first (found in Step 1); e.g., if the second path
determined in Step 4 is ADECB'FGZ (see Figure 2¢), it reduces
to path ADECBFGZ in the original graph (see Figure 2a), and is
said to interlace with the part BC of the first path, ABCZ, found
in Step 1; erasure of the overlapping part (or interlacing part),
BC, then leads to the pair, (ADECZ, ABFGZ), as the shortest
pair of node-disjoint paths.

Note that it is the process of node-splitting described in Step 3
that engenders node-disjointness between the two paths. If this
step is omitted, the ensuing algorithm corresponds to the
algorithm for the shortest pair of link-disjoint paths, with the
second path now determined in a modified graph, illustrated by
Figure 2b.

Algorithm 1 given above (Bhandari 1994) is different from the
previous versions (Suurballe 1974; Suurballe and Tarjan 1984).
In sharp contrast to the Suurballe’s algorithm, our algorithm
requires no canonic transformation or the use of a general

shortest path algorithm like Ford's algorithm for Step 4 above.
Rather, we modify the traditional Dijkstra algorithm (Dijkstra
1959) slightly for the special graph of Figure 2c. This modified
Dijkstra algorithm (Bhandari 1994), described in Appendix A,
reduces to the standard Dijkstra algorithm for nonnegative
graphs; thus, it is utilized also in Step 1 of Algorithm 1.

3. IMPLEMENTATION AND MAXIMAL DISJOINTNESS
ALGCRITHM

Figure 2¢ shows the modified graph in which the second path is
found. All arcs along the shortest path found in Step 1 of the
algorithm point in the backward direction, i.e., in the direction
from destination node Z to source node A. This modification is
due to Steps 2 and 3 of the algorithm. In practice, instead of
removing the forward arcs in Step 2, it is convenient to leave
them there, and also provide for each inserted arc of zero length,
an arc in the forward direction, as shown in Figure 3. These

N

A .—-—.-n.v- n.“. z

Figure 3 Network graph of Figure 2c modified
with forward arcs.

D

forward arcs are assigned large lengths such that they are not
traversed during the determination of the second path. In Figure
3, we show these lengths to be w; + a, i =1,2,3 for arcs AB, B’C,
C’'Z, respectively, and equal to by, i =1,2 for the forward arcs
complementing the split-node arcs of zero length; w; are the
original (nonnegative) lengths of the arcs, and the parameters a
(>0) and b; (>0) are large enough such that these arcs are not
traversed during the search of the second path (Step 4 of
Algorithm 1); therefore, these forward arcs are just spectator
arcs. Note also that because a; > 0 and b; > 0, no negative cycle
arises between a given forward arc and the corresponding
backward arc. Thus, the introduction of these arcs causes no
change in Algorithm 1. However, when complete physical-
disjointness is absent, some of these forward arcs would
necessarily be traversed. A suitable assignment of values to
parameters a and by then leads to a maximally-disjoint paths
algorithm, which determines the number of common nodes and
links when full-disjointness is absent .

3.1 Absence Of Disjointuess

To keep our analysis simple and useful, we assume a, = ao for all
i, and further set by = by for all i. Thus, we need to determine
only ag and b,

Consider the case of a graph which is a chain (a string of links).
See Figure 4, which illustrates its modified form after node-

260

w80 bo wa a0 bo bo Wred0
A w1 0 w2 0 o 0 we z
Figure 4 All ILilinks of the graph form a chain from A to Z;

=IL]

splitting and assignment of forwards arcs. It corresponds to the
worst-case scenario because

i) the shortest path (from A to Z) involves traversal of all the
links of the graph.

ii) it is a case of zero disjointness, since both paths traverse the
same set of links in the given graph.

Analysis of this extreme case helps to set the values of ag and by,
which can then be applied to any arbitrary graph. Refering to
Figure 4,

dAZ)=W, (1a)
where

W=ZIw; (1b)
w; is the length of the ith link, and the sum is over all the links
in the graph, G (N,L). Furthermore, the second run of the
shortest path algorithm yields

d(AZ) =W + 1Ll ag + (ILI - 1) by, (1¢)

We now require that parameter a be such that

d'(AZ) ag= L1 + Remamder(-(lu 1) bo+ W), (2)

where ILl is the number of overlapping links of the two paths. In
other words, we want

ap> (ILI-1) bo + W. 3

Denoting the right-hand side of Eq. (3) by r, we determine bg by
the requirement that

t/bg = (ILI-1) + Remainder (=W), 4)

where (ILI-1) is the number of common nodes in the two paths.
The foregoing result implies

bo> W, . %)
or
bo=W + &, (6)

where € > 0, and W is given by Eq. (1b). We now find that the
assignment:

=1Ll bo 0

satisfies the inequality, Eq. (3). Thus, the parameters ao and bo
are defined by the above analysis.

Note that the values assigned clearly do not permit the forward
arcs to be part of the shortest path determined in the modified
graph of a given graph, since alternate routes not involving the
forward arcs are always available with total length smaller than
bo. in the event complete physical-disjointness does not exist,
traversal of at least one of the forward arcs would automatically
occur, and the length of the path found greater than bo. The
above analysis sets up the values of ao and bg (Egs. (7) and (6))
in such a way that not only the selection of the forward arcs by
the shortest path algorithm is discouraged, but the number of
common links and the number of common nodes are separately
determined, when physical-disjointness does not exist (see
Corollary 1 below).

The analysis given above is an instance where parameter ag > by,
parameter bo is considered embedded in parameter ao. We could
have chosen to perform the analysis where the parameter ag is
considered embedded in parameter bg; this would have involved
division of d’(AZ) by by, instead of ap as in Eq. (2). However,
we choose the definition we have established for ap and bo via
Eqgs. (7) and (6) because this definition permits us to find the
common links first when full-disjointness does not exist (see
Corollary 1 below); link-commonness appears to be a more
serious concern than node commonness in telecommunication
networks.

Algorithm 2 The node-disjoint shortest pair algorithm
(Algorithm 1) may be restated as follows.

1. For the given pair of nodes, A and Z, under consideration,
find the shortest path from A to Z; denote the length of the
shortest path by d(AZ).

2. Modify the given graph by splitting the nodes as in Steps 2
and 3 of Algorithm 1. Add forward arcs (direction A to Z). See
Figure 3 for illustration.

3. Assign a length of b; = by, given by Eq.(6), to each one of the
forward arcs connecting the pairs of split nodes; assign a length
of 0 to each one of their counterparts in the backward direction.

4, Assign a length of ap + w; to the forward arc i, originally of
length w;; ap is defined in Eq. (7). To its counterpart in the
backward direction, assign a length of -w;.

5. Run the Modified Dijkstra algorithm (Appendix A) in the
above modified graph; denote the length of the shortest path
found by d’(AZ).

6. Transform to the original graph. Remove any overlapping
links of the two paths traversing the shortest path links in the
opposite direction. The desired optimal pair of paths with the
pair path length = d(AZ) + d'(AZ) results.

261

Corrunents: Except when the shortest path (see Step 1 above) is
a single link path, assignment of a special large parameter, ao, is
not really needed to achieve node-disjointness in Algorithm 2.
Our interest in assigning aq a large length defined, e.g., as in Eq.
(7), is motivated by the need to obtain maximally disjoint paths
with direct information on the number of common nodes and
common links in the event full-disjointness was not possible
(see below).

Maximally Disjoint Paths

If d'(AZ) in Step 5 of Algorithm 2 is greater than bg, full
disjointness does not exist, and d'(AZ) is not the true length of
the second path; consequently, d(AZ) + d'(AZ) in Step 6 of
Algorithm 2 is not the true length of the optimal pair found.

Corollary 1 Algorithm 2 finds a pair of paths that are
maximally disjoint, i.e., a pair of paths with a minimum number
of common nodes and links, and whose sum, d(AZ) + dy, is a
minimum; dy is the true length of the second path found in the
modified graph, and is determined as follows:

®)
®

d'(AZ) ap= m + remainder (=r),
/by = n + remainder (=dg),

where m is the number of common links, n is the number of
common nodes; m=0 and n=0 correspond to the existence of the
shortest pair of node-disjoint paths.

Further Remarks:

a) If contiguous bridges present in a graph (see Figure 5a) are
reduced to a single bridge of length equal to the sum of the

/N

Figure Sa Graph with contiguous bridges between A and Z.

contiguous bridges, which is commonly done in the analyses of
telecommunication networks, then n=2m +n’, where the 2m
common nodes are due to the m bridges and n’ is the number of
other common nodes not due to bridges. Inherent in the above
expression for n is the assumption that bridges do not occur at
the end point nodes. If they do, n=2m-1+n’ or n=2m-2+n’,

D E

Z

A)

o]
Figure 5b Two maximally disjoint paths (ABCZ, ABDCEZ)
between A and Z have common nodes B and C (n=2); commen
node B is due to bridge AB (n=1) at the end point A, and
common node C is not due to a bridge (n’=1).

R
B

accor “'ng as a bridge occurs at one of the 2 end point nodes or at
both the end point nodes. Thus, knowing n and m along with
the knowledge of whether bridges are present at the endpoint
nodes determines n’, the number of common nodes not due to
bridges. Figure 5b is an illustration of the absence of
disjointness. n=2, m=1, and n’=1 in accord with n=2m-1+n".

b) Note that if by = 0 for all i in Step 3 of Algorithm 2,
Algorithm 2 reduces to the algorithm for the shortest pair of
link- disjoint paths; setting by = 0 permits the second path found
in Step 5 of Algorithm 2 to pass through a node of the first path
found in Step 1; e.g., in Figure 3, the second path may run as
ADBB'FGCC'EZ, which reduces to path ADBFGCEZ in Figure
2a; setting by = 0 is equivalent to not having nodes split. When
full link-disjointness does not exist, d’(AZ) > ao. Corollary 1
then refers to maximally link-disjoint paths, with Eq. (8)
determining the number of common links with r = do; Eq. (9) is
not applicable. One also notes that, if one wishes, one can also
improve the definition of parameter ao here by repeating the
previous analysis (Egs. 1a-7) with b = 0; then from Eq. (3), one
sees that one can set ag= W + g, where £ > 0.

4. PHYSICAL-DISJOINTNESS VERSUS COST

In the previous sections, we gave prescriptions for the
implementation of the physical-disjointness algorithms. The key
parameters were a and by, assigned to the forward arcs (see
Figure 3). Each of the b; parameters were set equal to a large
value, bo, defined by Eq. (6), and similarly, the a; were set equal
to a large value, ao, defined by Eq. (7). The largeness of these
values ensured physical-disjointness. In this section, instead of
fixing their values to large numbers, ao and by, we let them vary
freely, i.e., we let 0 < a; < ag; 0 < b; € by. This permits node-
commonness as well as link commonness even when physically-
disjoint paths exist. As a result, these paths are smaller (or less
costlier) than fully physically-disjoint paths.

Corollary 2: Calling b; the extra cost (penalty) for common
node i, and a; the extra cost (penalty) for overlap with link i,
and assuming that 0 < b; < by and 0 £ a; < ap, Algorithm 2
finds a pair of paths with minimum total cost; the paths may
have common nodes and links, depending upon the coefficients
a; and by; the total cost includes the values of a; and b
corresponding to the common links and nodes; the true cost (or
length) of the second path found is dy = d'(AZ) - Za; -Zhy,

where the sum is over the common links and nodes.

Special Cases of Corollary 2:

a) If a;— 0, by — 0, the second path found is identical to the first
path, i.e., it is also the shortest path in the original graph.

b) If a; — ap, by — O for all i, the shortest pair of link-disjoint
paths algorithm results.

¢) If 3y — a5 and by — by for all i, the shortest pair of node-
disjoint paths results; except when the first path is a single link
path, a; 2 0 suffices.

262

4.1 Cost Of Link-Disjointness

Case b) above corresponds to the algorithm for link-disjointness.
Refer now to Figure 6. Assume that the shortest path from A to
Z in the modified graph passes through D and E. Suppose a=a,

Figure 6

for all i. Suppose now parameter a; is reduced in value from its
initial large value of ag. Then, at some stage parameter a; will be
such that the shortest path from A to Z may include arc BC. If
and when this happens,

d(1+2) = d(142;B'C) + am, (10)

where the left-hand side, d(1+2), is the length of the shortest
link-disjoint pair of paths 1 and 2, and d(1+2;B’C) is the length
of the shortest pair of paths which is link-disjoint, except for
link B’C in common to the paths between A and Z; am is the
threshold value of parameter a; for the onset of link
commonness. If we assume that the length of a link represents
the dollar cost of provisioning service over that link, then the
following interpretation arises: The cost of providing two paths
between A and Z (in Figure 6) to a customer is cheaper by ar;
dollars, if link B’C (or link BC in the original graph) is in
common. It is important to note here that there will be situations
where regardless of the amount of reduction in the value of a
given parameter, a;, there will be no change in status quo. Refer
to Figure 7, which is a modified graph corresponding to the

Figure 7

shortest path, ABCZ. by = 0. Using Eqs. (6) and (7) and setting €
= 1, ap = 224. Algorithm 2 gives correctly the shortest pair of
link-disjoint paths as (ABCZ, ADEZ) with length, d(1+2) = 8 +
16 = 24. Now if a; = a3 = ap =224, and a, is reduced from its
initial value of ag, then when a; < 3, the second path found by
the shortest path algorithm (Appendix A) is ABDEZ, i.e., link
AB is common to the two paths. arr = 3, i.e., the customer saves
3 units if he accepts the physical-diversity violation of link AB

commonness. Now suppose BD = 6, instead of 2, in the graph of
Figure 7. Then, no amount of reduction of parameter a; (lowest
permissible value = 0), will result in link AB commonness. In
this situation, the customer cannot have any savings by accepting
link AB commonness; rather, such a pair of paths is more costly;
thus the better choice is the link-disjoint pair, (ABCZ, ADEZ).

4.2 Node-Disjointness Versus Link-Disjointness

Refer to Figure 8, where by = 0 initially and a; = a; = ag; this is
the case of the algorithm finding the shortest pair of link-disjoint
paths. Assume the second path in this modified graph is
ACBB’DZ. Then the shortest link-disjoint pair is (ABZ,
ACBDZ), as seen in the original graph.. In Figure 8, if by is now
cranked up from its initial value of zero, a stage would be

Figure 8§

reached when the shortest path between A and Z in the modified
graph would turn out to be ACDZ. If byr is the threshold value
when this occurs, then in the original graph, the following
relation holds:

path ACDZ - path ACBDZ = brr. (11)
Equivalently,
d(142) - d(142:B) = by, (12)

where d(1+2;B) is the length of the pair of paths with node B in
common, and d(1+42) is the length of the node-disjoint pair of
paths.

Thus, as before, if the length of the link represents the cost of
providing service, then bir represents cost savings when
commonness at node 1 is permitted. Clearly, if the link-disjoint
shortest pair had been (ABZ, ACDZ) to start with, then
incrementing by from its initial zero value would be redundant.

4.3 Possible Studies

A. Start with a; = by = 0 (the two paths are completely identical);
keep b = 0, and, setting a, = a, increase a from zero to study bow
link-disjointness between the two paths evolves.

B. Keep a =ap, and setting b; = b, increase b from zero to see
how node-disjointness evolves from link-disjointness.

Hitherto, the parameters, & and b; were either all zero or equal
to each other (a; = a and b; =b), This restriction can be relaxed,
allowing for studies pertaining to the variation of a single

parameter or simultaneous variation of groups of parameters
selected from the sets, a and by.

C. Keep all parameters, a; and by, fixed at a5 and by, respectively,
except for one, say, by corresponding to the jth node on the
shortest path, The value of bj may be decreased from its initial
large value to study the onset of node commonness at node j, and
sO on.

D. Let ¢ be the extra cost (penalty) per unit (physical) length of

link overlap; replace a; with ¢ times the physical length of link i.

Instead of varying a; above, vary ¢ (¢20).

4.4 Physical Disjointness and Cost Measures

1. Link-disjointness (LD) for a pair of paths may be defined as
LD=1-% wy Zw, (13)

where the j sum is over the common links of the two paths
(counted twice) and the i sum is over the links of the two paths.

2. One also defines an increased cost fraction (icf) parameter:

icf = (Cost of 2 paths obtained (minus the artificial cost due to

‘the penalty parameters) - Identical case cost (a=0, b=0))/

263

Identical case cost (ai=0, b;=0), (14)
and study icf or simply the cost differential versus LD, where
LD is defined in Eq. (13). The identical case cost = 2 times the
cost of the single (shortest) path, while the two path cost =
d(AZ) + do, defined in Corollary 2.

When single links (or bridge cases) exist, no matter how much
one may vary the corresponding a;, the two paths will have the
single links in common, i.e., two completely link-disjoint paths
are not possible. Then maximum value of LD is less than unity,
and it may be defined as
[Dpux=1-2T w/ Zw, (15)

where the j sum is over the bridges between the end point nodes,
A and Z, and the i sum is over the two paths found when by = 0
and a = ao.

3. Similarly, parameters measuring node-disjointness can be
defined, and studied as a function of the cost savings.

5.SUMMARY

We have derived a physical-diversity versus cost algorithm from
the shortest pair of node-disjoint paths algorithm; this node-
disjoint pair algorithm (Bhandari 1994) is different from that of
the Suurballe’s algorithm (Suurballe 1974; Suurballe and Tarjan
1984) in that it require neither a canonic transformation nor the
use of Ford’s algorithm; rather, the standard Dijkstra algorithm
is modified slightly in the second run of the shortest path
algorithm to yield the shortest pair of node-disjoint paths. This
node-disjoint algorithm is subsequently modified by the

assignment of forward arcs with appropriately large lengths.
Assignment of these fixed larg - lengths *~ the forward arcs then
results in the algorithm for maximally-disjoint optimal paths,
which permits the determination of the number of common
nodes and links in the event physical-disjointness is not possible
due to the nature of the network. Subsequently, allowing the
forward arc parameters to vary leads to the desired physical-
disjointness versus cost algorithm. This algorithm can be very
useful in assessing cost savings to customers who cannot afford
the cost of full physical diversity.

The phyiscal-diversity versus cost algorithm was first given by
the author in 1991 as “A Least Cost Algorithm for a Pair of
Paths” (February 21, 1991, unpublished), and since then has
been extended to deal with physical-diversity problems
pertaining to the more complicated real-life networks (see
Bhandari 1994).

References

Bhandari, R. 1994. “Optimal Diverse Routing in
Telecommunication Fiber Networks.” in Proceedings of
IEEE/INFOCOM), Toronto, Canada, 1498-1508.

Dijkstra, E.W. 1959. “A Note on Two Problems in Connexion
with Networks”, Numer. Math. 1, 269-271.

Suurballe, J.W. 1974, “Disjoint Paths in a Network.” Networks
4, 125-145.

Suurballe, JW. and R.E. Tarjan. 1984. “A Quick Method for
Finding Shortest Pairs of Disjoint Paths.” Networks 14, 325-336.

Appendix A
The Modified Dijkstra Algorithm

This algorithm is a slight variant of the Dijkstra algorithm , and
is specially tailored to find the shortest distance between a pair
of nodes in the modified graph for the conmstruction of the
shortest pair of paths. For nonnegative graphs, it reduces to the
standard Dijkstra algorithm.

Let d(i) denote the distance of node i from source node A. Let
P(i) denote its predecessor.

1. Start with
d(A)=0, d(i)=I(A,i), if ieTa
=INF, otherwise (INF= Right-hand-side of Eq. (1c))
T;=set of first neighbor nodes of node i, 1(i,j)= length of
arc from node i to node j.
Set S=V-{A}.
SetP(i)=AVie S.

2. Find j € S such that d(j)=min d(i), i € S.
Set $=S-{j}.
If j =Z (the destination node), END; otherwise, go to 3.

264

3. Vie I, if d(j)+1(j,i)<d(i), set
a) d(i)=d(j)+1.i). P(i)=j
b) S=Su(i}:
goto2.

The algorithm above is different from the Dijkstra algorithm (in
Step 3 above) in that it scans all the neighbors of the node
selected (or permanently labeled) in Step 2. Furthermore, the
algorithm, via step 3b), ensures the inclusion in set S of any
node that has been relabeled in step 3a). This particular step is
important for the type of graphs (with negative arcs)
encountered in the disjoint path construction problem, but is
redundant for the nonnegative graphs. Thus, for the latter type of
graphs in which step 3b is not needed, this algorithm essentially
reduces to the Dijkstra algorithm.

uthor’s Biogra

Ramesh Bhandari obtained his Ph.D. degree in Theoretical
Particle Physics from Carnegie-Meilon University in 1978.
Thereafter, he performed research in diverse areas such as
particle phyiscs, light scattering by particles, and synthetic
aperture radar imaging before entering the field of
telecommunications. Since joining AT&T Bell Laboratories in
1988, Dr. Bhandari has performd design work for survivable
networks, and developed novel optimal graph-theoretic
algorithms for physical diversity in real-life networks. Presently,
he is constructing new teletraffic models for international
networks.

Dr. Bhandari has over 20 research publications. One of his
papers was selected and published in a special SPIE volume of
outstanding papers on Light Scattering; another paper in the
area of Networks was specially translated into Hungarian by an
international scientific committee. Dr. Bhandari has also taught
for over 6 years at a number of universities.

