Constrained Rerouting in Networks: An
Integer Programming Formulation

W. Weyerman, B. Durtschi, and R. Bhandari

Laboratory for Telecommunications Sciences
8080 Greenmead Drive
College Park, Maryland 20740, USA ~*

October 10, 2011

Abstract

In this paper, we address the problem of changing link weights within an
OSPF network to reroute a single demand over a given network link (or node)
while maintaining the routes for all other demands. It is often not feasible to
require that no other routes change, so we resort to infeasibility analysis to find
the smallest set of routes that must change in order to achieve our main objective
of rerouting the single demand. We formulate an integer prograim (IP) that finds
new link weights for the network that achieves this goal. We then propose optimal
~ iterative methods of reducing the number of constraints and decision variables in

this program. To arrive at a computationally feasible method, we then show a
linear relaxation in conjunction with some variants of the iterative method to
reduce computation time. We validate our algorithm by comparing the variants
to each other and to the sliding shortest path algorithm, which was developed for
a similar problem.

1 Introduction

In telecommunication networks, it is often desirable to change the link weights to
engender path changes in a certain desired fashion. For example, a high capacity
link might suddenly become available over which the traffic between the given
source-destination pair of an important customer might need to be rerouted to
alleviate congestion on the current route, and maintain the desired quality of
service as warranted, perhaps, by a service-level agreement.

* Questions or comments may be directed to Sam Weyerman at wsweyerman@gmail.com
or Ramesh Bhandari at drbhandarif17@gmail . com.

CONGRESSUS NUMERANTIUM 210 (2011), pp- 119-138

The problem of establishing (or changing) routes within a network by assigning
(or altering) link weights has received immense attention in the recent past, see,
e.g.. Ref. [9, 10, 16]. Fortz and Thorup {11] address the NP-hard problem of
weight-setting for a given set of demands in an Open Shortest Path First (OSPF)
environment, and subsequently «consider the problem of changing weights [12]
to avoid congested links; the emphasis in [12] is on making as few link weight
changes as possible to minimize the messaging chaos and the network congestion
time. Ref. [1, 4, 5, 16] also attempt to find the administrative weights so that
a given set of paths {(one path per demand) is realized by the standard OSPF
routing protocol, but they treat the problem as an uncapacitated problem. In
particular, Bley [5] goes further in evaluating the inherent difficulty of the problem
posed by Ben-Ameur and Gourdin [1].

More recently, Bhandari [3] posed the problem of rerouting a single demand,
with the requirement that the number of links on which the weights are changed be
as small as possible in order to reduce the implementation time of the link weight
changes within the OSPF environment; it was further required that the weight
changes (increments) be as small as possible in order to reduce the possibility
of shortest paths for the other demands within the network changing. Bhandari
[3] treated the problem as an uncapacitated problem and provided a simple,
polynomial-time heuristic called the Sliding Shortest Path Algorithm to solve it.
While the algorithm addressed the above two requirements of the problem, there
was no direct control over the number of paths of other demands in the network
changing on account of the link weight changes.

In this paper, we address a slightly different, but more challenging, problem
of not only modifying link weights to reroute a single demand such that the route
contains a desired link or vertex not already on the shortest path, but also to
minimize the number of routes of other demands that may change on account
of the link weight modifications. We assume that a simple path, including the
desired link or vertex, exists. Excluding the diagonal elements that are always
zero, a demand matrix in general can have several entries that are zeros on account
of no traffic flow for the corresponding pairs of nodes. Instead of performing an
analysis for every possible demand matrix (having a different set of zerc entries),
we adopt the general case of no entries being a zero (other than the diagonal
elements) within the demand matrix; i.e., there is traffic flowing between every
pair of nodes within the network. The constraint that no other routes change is
almost always infeasible, so we resort to minimizing the number of routes that
change using infeasibility analysis. Because this problem, as those related to it,
appears to be NP-hard, we seek heuristics. The requirement of integrality of link
weights leads to an integer formulation of the problem which is then solved via
its linear relaxation. The problem is treated as an uncapacitated problem.

The paper provides a detailed theoretical as well as numerical analysis of this
problem. In Section 2, we develop and describe the problem formally, and in
Section 3, we discuss some methods of reducing the problem size without losing
optimality. In Section 4, we present some polynomial time heuristics, and discuss
their performance in Section 5.

120

2 Problem Formulation

We wish to reroute the shortest path between two nodes over a particular link
(or node) while minimizing the number of other shortest paths that change. We
will consider weighted, undirected graphs of the form G = {V,E,w}. The set of
vertices of the graph is denoted V with |V| = n. An edge is denoted {(z,j) € E
with 3,7 € V and the number of edges is |[E| = m. We consider graphs where the
weights of the edges, w, are positive integers, thus w = {w. € Ny|e € E} where
Ny = {1,2,...}. The notation we is used to denote the weight of edge e € E. A
path, P, fromitoj, i,j € V is denoted P(i, j), and the length or cost of the path
is |Ple = .cpWe As weare dealing with routing networks, the only paths we
deal with are simple paths. To denote the shortest path from ¢ to j, we will write
PZ%(i,7). When the context is clear we will leave out the source and destination,
(i,7), the symbol G for graph, or both.

Suppose we are given a pair of nodes s,t € V, and an edge (p,q) € E such that
there is at least one simple path in G from s to ¢ that contains the edge (p,q).
While we explicitly treat the case of rerouting a single demand over a given edge
(p,q) in this paper, we note without proof that the fomalism of the paper also
holds for the problem of rerouting over a single node, p, by considering a simple
path from s to t that contains node p.

We wish to find a modified graph G’ = {V, E,w'}, where w, = we + Te, with
(p,q) € P& (s,t); that is, the edge (p,q) is contained in the shortest path from s to
t in the modified graph. We continue to impose positive edge weights, w, € NT,
which implies that z. € Z, e > —wWe, Where 7 is the set of integers. Furthermore,
we wish to minimize the amount of chaos in the network, so we want to maximize
the number of i, pairs such that the unique shortest path P&(i,7) = P& (3, 5)-
The set of all shortest paths excluding the desired path, the path from s to t, in
a graph is P*. For a given shortest path, P* ¢ P*, we will denote the set of all of
the simple paths that are not the shortest path, or alternative paths, AFP" Fora
given pair ¢, j, we write the shortest path restriction as a set of inequalities

S w < S wy, VA € ATG. (2.1)

e€PY dEA

which we can expand to

Sz =Y wa < |Ale~|P’le vae AT (2.2)
eEP* deA
Suppose for some P* € P*, ’AP*$ = s, we can enumerate AP as {A1,..., As}

The inequalities can then be written in matrix form as Cz < b, with C € R®*™,
r € R™ and b € R°. A row of C specifies which edges belong to the shortest path
and which belong to the alternative path in a given comparison. The vector z
represents the changes in edge weights, and b is the difference in the weight of
the shortest path and the alternative path. We set
) 1 e; € P* and e ¢ Ax
cki=4{ -1 e ¢ P ande € Ak

0 otherwise.

121

The values of b are by = |Agje — [P7e — 1.

Since our work is motivated by the OSPF routing protocol where the minimum
edge weight is 1, all edge weights must be positive. We will show that this
allows us to, without loss of generality, consider only positive changes to the edge

weights.
Lemma 1. Suppose C € R™*™, bz,w € R", with Cw = —b, Cx < b, and
—w < . Then there is some = € R", 0 < 2’ such that Cz' <b.

Proof. Let C € R™™, br,w € R™, with Cw = —b, Cz < b, and —w < =.
Because —w < z, for each z; there is some a; € R such that |ai| = a:(wi + x:).
We will pick o = max;{a;) and let ' = aw + (1+ a)z. Then we have

Clzy=aCuw+ (1 +a)Cx
—ab+ (1 +a)b
b.

IN

If

We conclude by noting that for any 7 < n.

aws + (1 + o)z = o + alw; + 73)

x; + og(wi + o)

[\

= @ + o]
> 0.

a

Hence, 2’ satisfies the conditions of the lemma.

We previously showed how we can represent a set of path constraints as a
linear relationship Cx < b. This representation will be used to apply Lemma 1
to show that any set of shortest paths that can be achieved by allowing weights
to change negatively can also be achieved while only allowing positive weight
changes. _

Theorem 1. Consider two graphs G = {V.E.w} and @ = {V,E,uw'} with
w,w' € NT. There exists some other graph G = {V, E.w'} with each w. 2 we
and P (3,7) = P5+ (i,) for every pair of vertices i, € V.

Proof. Let G = {V,E,w}and G' = {V.E,u'}. We will define » = w’ — w. Then
_w = 7 —w' < z. For each pair of vertices, ¢,7 € V', we construct a set of
(satisfied) inequalities of the form

IPe ey < 1Alecwn Ae AFe (2.3)

where the lengths are with respect to the graph G’. We have previously shown
that these can be written as a set of linear inequalities of the form Cz < b with
7z as defined above and b = |Alsu) — [P leqwy- With this definition, we have

[Cwle = P& ey — |Aleqw) (2.4)
= —by. (2.5)
122

We have shown that the conditions for Lemma 1 are satisfied, so there is some
zt > 0 such that Cz+ < b. Hence we can define w¥ = w + ™ to arrive at the
desired G™. 0

In Theorem 1 the graph G is used simply as a point of reference. The theorem
states that for any graph and any set of minimum edge weights, a graph with
equivalent shortest paths can be constructed with edge weights greater than or
equal to the minimum weights. The graph G is used to define these minimum
edge weights. In our problem, we use our original graph as the point of reference,
@, and leverage this theorem to reduce our search space to only positive changes.
This is done because if there is a feasible graph with negative changes, we know
by Theorem 1 that we can construct a graph with only positive changes that is
also feasible.

We pose this topology reconfiguration problem as an integer program. Our
development is similar to that of [1, 16]. We will minimize the sum of edge
changes, although other objective functions may be used. Our constraints will
be that the path from s to t contain edge (p,¢) and that no other paths change.
However, when changing the path from s to t, there will be paths that will be
required to change. We can easily characterize some of these paths.

We will denote the set of all paths from s to t that include edge (p,¢), M =
{u(s,t)|(p,q) € p(s,t)}. For a path u € M, the subpath consisting of the path
from s to p or ¢ will be denoted u', whichever arrives in the path first, and
the subpath consisting of the path from p or ¢ to t as u?, we start this path
at the vertex p or q that comes later in u(s,t). Hence u' will contain s and
either p or g, and u? will contain t and either p or g (whichever is not in ub),
and the concatentaion of these paths, {u',u?} is pu(s,t). For example, consider
again the graph in Figure 1. For this graph p = {s,q,p,q,t}, so pl = {s,a,p}
and p? = {g,t}. If the shortest path between two other nodes, 3,7 € V passes
through both u! and 2, such as {a,t}, it is required to change in order for uls, t)
to be the shortest path. We can generalize this as a theorem.

Theorem 2. Consider a graph G = {V,E,w}, such that u(s,t) = {u', u*}
with u,v € V and u € p, v € u?, and w,v € P*(i,5). If the shortest path
P*(3,5) € u(s,t) and p(s,t) # P7(s,t), then for any graph G = {V,E,w'} with
/*L(Srt) = Pé'(s7t)’ Pé(laj) # PCt"(L])

Proof. Let G = {V,E,w} with 4,j € V, such that there is some u € w' and
v € u? and u,v € P*(4,j) and the shortest path P&(u,v) ¢ u(s,t). Furthermore,
suppose that u(s,t) # P*(s,t). Also, let G’ = {V, E, w'} be a graph with positive
weights such that u(s,t) = P& (s,t). Consider the path P(7,j) with the same
path from 4 to u and from v to j as P*(4,7), but with the path from v to v being
that of u(s,t). It follows that P, (u,v) is the path contained in u(s,t), and since
P(i,7) and P*(i,j) differ only over this path, |P(3,5)|e(w)) < [P* (%, I)leqwys 0
the shortest path from 7 to j must change. O

The paths that satisfy the assumptions of Theorem 2 must be excluded from
our constraints. These paths are generally few in number. We call the paths that
satisfy Theorem 2, PZ; this set may be different for different u’s. We then define

123

Figure 1: This graph gives an example of when the shortest path from s to
t over (p,q) requires more paths to change than a longer path from s to t.

the set of constrained paths P§ = P* \ P.. The other paths are not as easily
determined as discussed in [1, 16].

Picking u is not a simple task, as the shortest path that contains the desired
edge, (p,g), may not be the best choice because rerouting the network traffic over
the shortest path may require more paths to change than a longer path. It may
be necessary to route the traffic over a higher cost path in order to minimize the
number of other paths changed. Consider the graph in Figure 1. The shortest
path from s to t over edge (p,q) is {s,a,p,¢,t}. Forcing the shortest path to
be this one requires adding 5 to the weight of edge (a,¢). This will change the
following 3 paths: s to g, a to ¢, and a to g. Another solution, increasing the
weight of edge (s,a} by 7 only changes 2 shortest paths: s to p and s to q. Hence,
to find the minimum number of shortest paths changed, alternate paths from s
to ¢ must be considered and not only the shortest path traversing edge (p,q). We
formulate a two-stage optimization problem to first find the 1 which requires the
smallest set of paths to change, and then determine the edge weight changes to
reroute the demand over that path.

We first determine the p that satisfles

min |[PX(u)].
u(s,t)eMI ()]

124

|
|

Figure 2: This graph results in infeasibility in problem (2.6).

Using this choice for u, we solve

minimize > . (2.6a)
ecE
subject to er - Z zq < |P(s,t)le — lple
eCu deP(s,t)
P(s,1) # i (2.6)
Z. Te — Za:d < |Ale = |P"e
e€P* deA

P eP;, Ac AT (2.60)
z. €{0,1,2,...}
ee E.

2.1 Infeasibility

This problem is often infeasible. An example of a graph that results in infeasibility
is given in Figure 2. In this network, let s = ¢ and ¢ = f with the desired edge
(e, f). In this graph, u(a, f) = {a,e, f}, with ! = {a,e}, and p? = {f}, and

125

Figure 2: This graph results in infeasibility in problem (2.6).

Using this choice for u, we solve
minimize

subject to

2.1 Infeasibility

Z Ze | (2.6a)

e€FE
doze= Y @a<|P(st)le— lule
ecp de P(s,t)
P(s,t) # p (2.6b)
Z Te — de < |Ale ~ |P"|¢
eg P* dcA

P eP;, Ac AT (2.6¢)
ze €{0,1,2,...}
ec E.

This problem is often infeasible. An example of a graph that results iri infeasibility
is given in Figure 2. In this network, let s = a and t = f with the desired edge
(e, f). In this graph, u(a, f) = {a,e, f}, with u! = {a,e}, and p* = {f}, and

125

Size |10 [25 [50[75 100
No. Infeasible | 5 [34 | 74 | 85 | 93

150 |
97 |

|
|

Table 1: Number of trials out of 100 that problem (2.6) was infeasible for
varying network sizes with ¢ = 3.

P (s, t) = {a.d, f}. An infeasible subset of the path constraints is

Tae + Te.f — Tad — Td,f < —Wa.e — We, f + Wa.d + wWq, £,
Ta,e + Tad = Tbe — Thd < ~Waec — Wad + Whe + Wha,
Tod +Tdf— The — Tef < —Whd— Wd.f + Whe + We,f,

Th,c + Tpe — Tac— Tae < —Whe— Whe + Wae + Wae-
The sum of all four constraints gives
0<0.

Which is clearly a contradiction. Relaxation of any one of these constraints would
result in a feasible problem.

We have also seen that as the size of the network grows, so does the probability
of infeasibility. As shown in Table 1, the probability of infeasibility using this
method quickly approaches 1 as the size of the network grows over 100 nodes.
These results are obtained using random graphs of varving size up to 150 nodes,
with average degree, 4, near 3. For each network size, we attempted to solve
problem (2.6) for 100 randomly generated graphs and report the number of times
the problem was infeasible.

2.2 Constraint Relaxation

To solve (2.6), we want to find the smallest set of constraints to relax to make the
problem feasible. We will solve a problem closely related to infeasibility analysis
discussed in [17, 6, 7, 15] where the goal is to determine the minimal set of
infeasible constraints. We follow an approach using binary elasticity variables to
allow constraints to be violated and impose a penalty for doing so and minimize
the total penalty incurred.

126

minimize, Z vpr + [P ()] (2.7a)
Prep;
subject to Zze - Z zg < |P(s,t)|e — |ple
e€u deP(s,t)
P(s,t) # (2.75)
Z Te — Z:vd < |Ale = |P"|e +nup~
ec P* . de A
P ePi,Ac AT (270)
z. €{0,1,2,...}
ecE
vps € {0,1}
P*ePg.

Here n € Ni is some number large enough to render the constraints where
vp» = 1 non-binding. We use the solution of this problem to define the set of
constraints for (2.6). We define the set P, = {P*|P* € P*,vp~ = 1}, and solve
(2.6) using the set of paths Pg \ P;.

3 Optimal Constraint Reduction

The number of constraints in problem (2.7) makes it computationally difficult
not only to solve the problem, but to construct it as well. From combinatorics,
it is known that |P*| = QL%Z—Q — 1. Furthermore, for each path P* € P*, there
are several constraints in the form of equation (2.7c). In the worst case (a fully

connected graph),
Z (
{(n 2 z)'

If every path is enumerated as a constramt, then the number of constraints in the
IP is exponential in the size of the graph. We will explore methods of reducing
the number of constraints and call the included alternative paths A¥ T c AP
The collection of all included alternative paths is Ao = Up.cp- A"

-

3.1 Determination of Ag

For a path P* € P*, we propose two methods to determine .43~ . Although there
- are many alternative paths, those that are significantly longer than the shortest
path are not likely to represent a binding constraint. It is not known a priori which
alternative paths will be binding so we propose two iterative methods for adding
constraints. These methods differ in the initial setup of constraints, but the
iterative method is the same. For initialization we only add a subset of each AF”
to our initial constraint paths, AJ ", This may allow the shortest path to change

127

without penalty, so we perform an iterative method similar to the one described
n [16]. After solving the problem at iteration k, each P* € P~ with vp- = 0 must
be checked to insure that the shortest path remains P*. If any shortest path P~
changed, the new shortest path is added to A, to arrive at AP, We also add
P* to a new set, Cx, which is the set of paths that changed in iteration k. The
problem is then solved again with the new constraints. If no paths changed, then
the algorithm terminates. By adding the iterative method, the solution remains
optimal because no paths are allowed to change without penalty. We desire a
balance between the number of constraints in the mathematical program with
the number of iterations necessary to solve the problem.

3.1.1 Fixed Number of Constraints Per Path

For the first technique, A} is generated by adding a fixed number of constraints
for each path. This technique adds constraints that the shortest path remain
shorter than only the K shortest paths in P¥". The problem of finding the K
shortest simple paths has been studied widely and polynomial time algorithms
are given in [8, 14, 18] among others. Thus, for each P*, A" is initialized to be
the set containing only the K shortest paths, excluding the shortest path. We
then employ the iterative process.

3.1.2 Constraints Based on Path Weight

The second technique is a more targeted approach which results in varying cardi-
nality of AF", even allowing A§" = @ for some paths. A path is seen as likely to
change if the weight of an alternative path is close to the weight of the shortest
path. For this technique, an alternate path A € A" is added to AFT only if

P*
J; A,'j < (3.1)

where » € R is some predetermined ratio. We have found that values between
1.05 and 1.3 seem to work well. These alternative paths are as easy to generate as
the k shortest paths. The same algorithms can be used by changing the stopping
condition to be that of equation (3.1) instead of number of paths found. As with
the previous method, this may allow some paths to change without penalty, so
we employ the same iterative process.

3.2 Desired Path Constraint Reduction

The desired path is not already the shortest path, so there may be many paths
that are shorter than the desired path. Thus, a slightly different method is
used to initialize these path constraints, To reduce the number of constraints
on the desired path, only a subset of the alternate paths that are shorter than
the desired path are added. First, the shortest path from s to ¢ is added to A5
while maintaining the set of edges £ that are in at least one path in A% Each
subsequent path is only added to A} if there are enough unique edges in the path,
i.e. the ratio of edges in the path that are in £ to the total number of edges in

128

:

Algorithm 3.1 Iterative Optimal Method
Require: G, s,t,p,q
1: for all p € M do

2. (Co, p, Pg, Ag) « initialConstraints(G, s,t,p, q)
3: k<« 0

4: while C; # 0 do

5: (status,G’) < solve(u, Pg, Ax) {using (2.6)}
6: if status is infeasible then

7 Ry + relax(p, P§, Ax) {using (2.7)}

8: 'P;g+1 — PS \ R

o: G’ « solve(u, P}, Ax) {using (2.6)}

10: else

11 Piaa<Ps

12: end if

13: (Ckt1, Aks1) « addConstrs(G’, Py 1, Ak, Ck)
14: k+«—k+1
15: end while

16: if [Pg,,| < |BestP| then

17: BestP + P; .y

18: BestG' « G’

19: end if
20: end for

21: return BestG’

the path is small enough. For example, let P be a path from s to t such that
|Pl¢ < |ule. Suppose that the P has b hops, and ~ edges are in both P and £.
We will include the path if .

b
where 0 < p < 1. We then iteratively apply this method while the desired path
is not the shortest path.

We have shown some methods of reducing the number of constraints in prob-
lem (2.7), while still arriving at an optimal solution. We show these methods in
conglomerate as an algorithm in Algorithm 3.1. The last hindrances to the solu-
tion of this problem are the integer constraints on the decision variables and the
need to solve these IPs for all u € M. The relaxation of the integer constraint,
and any consequent integerization method, will result in a sub-optimal or perhaps
incorrect solution. Furthermore, solving for only a subset of M may result in a
sub-optimal solution. We will describe some heuristic methods of relaxing the
problem to achieve sub-optimal solutions.

<ps

129

T —

4 Linearization and Rounding

Because this problem formulation is an IP, it is intractable and, hence, unsolvable
for moderate to large sized graphs. Because of this, we seek heuristics. One such
method, the sliding shortest path (SSP) algorithm, is given in [3]. While this
method is computationally fast, its aim is to modify the smallest number of edge
weights in the graph rather than minimize the amount of turmoil. Therefore, we
will seek heurisitics based on the methods given in Section 3 and compare these
methods to the SSP.

To deal with the size of M, we only solve the problem for the shortest path,
i € M, such that for any u' € M. itle < |p'le. A polynomial time algorithm
to find this path is given in [2); this requires finding the shortest vertex-disjoint
paths connecting s to p (or ¢) and t to g (or p). A K-shortest vertex-disjoint
paths algorithm would allow for the solution over the X shortest nwe M.

To arrive at a polynomial time algorithm, we linearize problems 2.6 and 2.7
and round the linearized solution to arrive at an integer solution. In order to
minimize rounding errors, we reduce the right hand side of éach constraint by a
fixed value & € {1,2,...}. This forces each shortest path to be at least o shorter
than the next shortest path. We call the linearized solution method the Iterative
Linear Elasticity (ILE) method.

n{n—1)

This algorithm requires m+ variables each time the relaxation is solved.
Although we are solving a linear program, this is a large number of variables and
the solutions may take a considerable amount of time for large graphs. We propose
two further relaxations to the problem to reduce the run time. First is the greedy
ILE (G-ILE). In the greedy ILE when a path is relaxed, it is never put back into
the problem. Hence we modify line 8 of Algorithm 3.1 to be Pii1 =P\ Ry and
use Py in place of P§ on lines 5 and 7.

We can further reduce the number of decision variables by considering only the
most recently added constraints for relaxation. For this modification. we change

constraint (2.7c) to be the following two constraints:

Z me—Zxd< [Ale =Pl — o
cE P* dcA

P* e P\ C,Ac AL,

Doae—S za<{Ale—|P"li-a + v

eEP* d€A

(4.1)

P*eC Ac A"

We call this method the restricted ILE (R-ILE) method. Relaxation of only a
subset of the relaxable constraints opens up the possibility of infeasibility, which
we discuss next.

4.1 Infeasibility

The R-ILE method may result in infeasibility during the relaxation phase. Infea-
sibility can result if constraints are added to the desired path as well as to other

130

Algorithm 4.1 addConstrs for restricted ILE

Require: G”,P,:H,Ak,ck
(Caesired, Ai11) + addViolatedConstrs(G, Ax)
if Chesireda # @ then
return (Cy, Axy1)
end if
(Cht1, Aks1) « addViolatedConstrs(G’, Py ;, Ax)
return (Cpi1, Agyq)

paths in the same iteration. This is because these path constraints are the only
constraints that are not allowed to be relaxed. If the previous iteration resulted
in a feasible solution and constraints are added which cause the problem to be-
come infeasible, relaxation of all newly added constraints will result in a feasible
solution (namely the solution obtained at the previous iteration). Hence, if a fea-
sible relaxation does not exist, there must be some previously added constraint
that conflicts with a new constraint on the desired path, resulting in infeasibil-
ity. To prevent this, we propose an extension to the addConstrs algorithm such
that if any constraints are added to the desired path, we do not add any other
constraints. Furthermore, in the event that an infeasible solution is reached, the
most recently added constraints on other paths are allowed to be relaxed. Our
add constraints algorithm is given in Algorithm 4.1.

Conjecture 1. Unless it is not possible to make the desired path the shortest
path, using Algorithm 4.1 will always result in a feasible solution.

Proof. Suppose we have a graph G = {V,E,w}, and s,t,p,q € V, (p,q) € E,
such that there is a simple path from s to t over the edge (p,q). We will show
that the ILE method using Algorithm 4.1 to add new constraints will not result
in infeasibility. The only way to reach infeasibility using the ILE method is for
the LRR method to be infeasible and then to not have a feasible relaxation. At
iteration & of the algorithm, we will denote 4y as all constrained alternate paths,
Cr the path constraints most recently added to paths other than the s to t path
which are relaxable this iteration, and .A; as all constraints on the path from s to
t added since the last iteration that constraints were added to a different path.

On the first iteration, Co = {P*|P* € P;, Af” # 0}. If the LRR problem is
infeasible, then all constrained paths other than £(s,t) may be relaxed in ILE
problem. If all paths in Cp are relaxed, we are left with only the constraints on
the path from s to ¢, A*. The edge weights can be changed to move the shortest
path over u, so the relaxation is feasible.

On iteration k, there are two cases. Either on iteration k — 1 constraints were
added to paths other than u, or on iterations k — z through k— 1 constraints were
added to u. In either case, the LRR problem was feasible at the end of iteration
k—1.

Suppose constraints were added to paths Cx—1 on the previous iteration. Prior
to these constraints being added, we know the LRR problem was feasible. There-

131

Figure 3: This graph gives an example of rounding changing the shortest
path. Before rounding, the shortest path from a to ¢ is {a,b,c}. After
rounding, the path changes to {a,c}.

fore, since the relaxation of all constraints on the paths in Ci_; results in a less
constrained problem than that at iteration & — 1, the ILE problem is feasible.
Suppose constraints were added to g during iterations k — z, through &k — 1.
This is the first case we have considered where A; # 0. If z = k, then we have
Cr = Co, and we have the first case where relaxation of all constraints on paths
other than p results in a feasible solution. If z < k, then some constraints were
added to paths other than p at iteration £ — z — 1, and Cx = Ck_.. At the end of
iteration k — z — 1, u(s,t) was the shortest path from s to ¢, otherwise constraints
would have been added to u. Hence all constraints in A4, were satisfied. Therefore,
if we relax all constraints in Cx, then we arrive at a linear program similar to that
at iteration k —z — 1, excepting that there are more constraints on the ;. Because
there was a feasible solution with p(s,t) as the shortest path from s to ¢, none
of these extra constraints were violated. Therefore the same solution is feasible
if all constraints on paths in Cx are relaxed. O

4.2 Sub-optimal and Incorrect Solutions

Although the solution obtained from the linear program is optimal for continuous
variables, when rounded, it may lose optimality. This results in a sub-optimal,
and perhaps incorrect solution because shortest paths may change when rounding
weight changes. We say the problem is incorrect if the desired path from s
to t does not contain edge (p,¢) and suboptimal if after rounding other path
constraints are violated. An example of this is given in Figure 3. The parameter
a is intended to reduce the number of paths changed due to rounding. For
example, in Figure 3, suppose we force path {a,b,c} to have a length at least
2 greater than path {a,c}. This corresponds to a value of & = 2. To do this,
wee must change to be 11.3 which is longer than the shortest path length of 9.3
by just 2. Rounding off in this case preserves the shortest path. As the graph
gets larger, o should also increase, since there are likely to be more edges in the
shortest paths, and thus larger errors without the slack variable.

We also lose optimality when rounding problem (2.7). This method puts a
lower cost on a small relaxation of several paths than a large relaxation on a single
path. We also round the edge weight changes, so rounding errors may occur as
described above. In the greedy ILE, once a set of path constraints is relaxed,

132

they are not reinstated at a later iteration. In the restricted ILE only a subset of
the possible paths for relaxation are considered each iteration, it may be the case
that at an iteration of the algorithm, relaxing one path that was added several
iterations ago may result in a feasible solution, but more than one of the newly
added paths must be relaxed in order to achieve feasibility.

5 Experimental Results

For the experimental results, we test two variations on the ILE algorithm, the
greedy ILE (G-ILE) and the restricted ILE (R-ILE). For each we tested adding K
constraints per path (with K = 3) and adding only the paths with a weight within
a ratio of 1.1 of the shortest path. We will compare these to the results given
by the SSP algorithm. We tested the algorithms using varying values for the size
of the network, n € {10, 25,50,75,100, 150}, the average degree, § € {2,3,5,8},
and the linear programming value, o € {1,2,5,10}. For our baseline values,
we set n = 100, 6 = 3, and @ = 5. For each set of experiments, we fixed
two of these values and allowed the other to range over the allowed set. For
each combination of «, §,n, we ran 100 trials. The metrics we compare are run-
time, number of paths changed, number of edges required to change, and rate of
incorrect solutions. The results are shown in Figures 4, 5, and 6.

We use randomly generated networks with a fixed number of nodes and a
target connectivity. To generate an n-node graph with average degree §, we first
build a random n-node tree. We randomly assign an integral value to each edge
weight, chosen from 1 to 1 + & *x n/4. Once the tree was built, further edges were
added in accordance with the desired target average degree. It was ensured that
no spurs (nodes with degree 1) were left within the constructed graph by adding
an edge to connect each node with degree 1 to a randomly chosen node.

In Figure 4 are the results of varying the number of nodes in the network.
From these figures, we see that the ILE algorithm in all forms has a much longer
run time than the SSP algorithm. Furthermore, we can see the quadratic run time
with respect to the number of nodes. The ratio initialization method resulted in
better runtimes than the K-shortest path method while not greatly affecting the
number of paths changed. Also, the restricted version of the ILE had a faster
runtime than the greedy version while only taking a small penalty in the number of
paths changed. We also see that the ILE algorithms performed much better than
SSP in terms of number of paths changed, but required that most of the edges in
the graph have their weights increased. This makes the topology reconfiguration
a difficult task.

In Figure 5 are the results of varying the target average degree, 6. These
graphs indicate a linear growth in the runtime of the ILE algorithm with respect
to the number of edges in the graph. The percent of edge weights required to
change using the ILE algorithm remains high while the number of paths changed
is still much lower than SSP. The number of incorrect solutions seems to be
independent of the number of edges in the graph.

Figure 6 contains the results of varying a. These results indicate that there
is a trade-off between the probability of getting an incorrect solution and the

133

Average Time per Problem with8=3, a=5 Percent of Edge Weights Changed with 03, u=5
100
—&— G-ILE, ratio 30
— B - G-ILE k-paths 2 80
x R-ILE, ratio § 2
s = X = - R-ILE, k-paths g 70 —+H8— G-ILE, ratio
O 58P £ 80 — 8 — G-ILE, k-paths
@ 50 X R-ILE, ratio
B 40 “=X~— - B-ILE, k-paths
g .
g 5 s8P
3
oo,
o Q o Q.- O
0 50 100 150
n n
(a) Run time per problem. Each data (b) Percent of edge weights changed.
point is averaged over 100 trials. Each data point is averaged over 100 tri-
als.
Percent of Paths Changed with =3, a=5 Incorrect Solutions in 100 Trials with6=3, a=5
7
2r O - le)
20 - — B G-ILE, ratic a5 —8— G-ILE, ratio
18 " — B — G-ILE k-paths ‘3 — 8 - G-LE k—pa!hs
9 : X+ R-ILE, ratio 55 X R~ILE, ratio
S) — X = - R-ILE, k-paths b - =X R-ILE k-paths :
¢ ’
8’14 (03 S - 88P o 4
g — 5
% 12 o .. g 3
° z
F= =]
£ 10 52
8 €
31
6 H
4 0
0 50 100 150 0
n n

(¢) Percent of paths changed, Each data (d) Number of solutions out of 100 trials
point is averaged over 100 trials. that were incorrect.

Figure 4: Plotted results allowing the number of nodes, n to vary. For these
experiments we fix § = 3, o = 5, and we vary n € {10,25,50, 75,100, 150}

number of paths that change. We suspect the apparent minimum of the number
of paths changed around the value of o = 2 is due to the increasing difficulty of
meeting the path constraints as « increases. This ‘difficulty’ is also apparent in
the number of edge weights that are required to change as « increases.

_ The totality of the results confirm that our proposed algorithm does indeed
reduce the number of paths that are changed when re-routing traffic between two
nodes. This comes at the expense of higher runtime and most of the edge weights
needing to be changed when compared to the SSP algorithm. The parameter o
did what it was intended and reduced the number of incorrect solutions. This
improvement came at the price of more paths and edges changed.

6 Conclusion

In this paper, we considered the problem of modifying the weights in an OSPF
network to reroute a single demand over a given link (or node) while maintaining
as many routes for all other demands as possible. We formulated an IP that gives

134

Average time per problem with n=100, a=5 Percent of Edge Weights Changed with n=100, u=5

35 100
30 —=—8— G-ILE, ratio . %0 [rﬂ"‘ .
— 8 — G-ILE, k-paths 8 80
25 © X - R-ILE, ratio
=X~ - R-ILE, k-paths gv 70 —&— G-ILE, ratio
20 5 ~ B — G-ILE k-paths
$ 2 50 X - R-ILE, ratio
15 ‘g 40 S X ;l;!;E k-paths
10 2 5
: 3o
o P o [oR o NRNEEES O O
100 150 200 250 300 350 400 450 100 150 200 250 300 350 400 450
of edges # of adges
(a) Run time per problem. Each data (b) Percent of edge weights changed.
point is averaged over 100 trials. Each data point is averaged over 100 tri-
als.
Percent of Paths Changed with n=100, a=5 Incorrect Solutions in 100 Trials with n=100, a=5
16(5 o)
g 45
4 @ £
- . £ 4 X\
€4 o.... e 3?35)
% " -—— G-ILE. ratio § e
10 — 8 — G-ILE, k-paths] 25 - .
5 N £ . g ~
2 o X R-ILE, rafio = 2r B x
£ 8 = X— + R-ILE, kepaths ° 15 . —8— G-ILE, ratic
a LS ep 3" \ | = 8 = G-ILE k-paths
& O 8sP E ! \ © % - R-ILE, ratio
o o e Z Z 05 \ - - — X— R-ILE, k-paths
4 0 b
100 150 200 250 300 350 400 450 10 150 200 250 300 350 400 450
of edges # of edges
(c) Percent of paths changed. Each data (d) Number of solutions out of 100 trials
point is averaged over 100 trials. that were incorrect.

Figure 5: Plotted results allowing the target average degree, 6 to vary. For
these experiments we fix n = 100, & = 5, and we vary § € {2,3,5,8}

an optimal solution to this problem. Since the mathematical programming rep-
resentation has an exponential number of constraints with respect to the number
of vertices in the graph, we gave some iterative methods to reduce the num-
ber of constraints. We also proposed a linear program with variants that give
sub-optimal solutions to this problem. We then discussed the reasons for sub-
optimality and sometimes incorrect solutions. We compared these methods to a
known method, the Sliding Shortest Path method, and experimentally showed
that the new algorithms changed significantly fewer other shortest paths in the
network, but require that many more edges be changed and take significantly
longer to solve.

7 Future Work

The solution to this problem is the weight changes that minimize the number of
routes that change. It was shown in [13] how to change the topology in OSPF
networks to avoid routing cycles. However, this does not indicate how to make

135

Average Time per Problem with n=100, =3 Percent of Edge Weights Changed with n=100. 8=3
96 [
94

g 92
é %
88
kst
g o 86
S 84
| ——8— G-ILE. ratio L —H&— G-ILE, ratio
-~ 8 — G-ILE, k-paths 3 — 8 — G-ILE, k-paths
x R-ILE, ratio hit 8 X R-ILE, ratio
7 - —X— - R-ILE k-paths

(a) Run time per problem. Each data (b) Percent of edge weights changed.
point is averaged over 100 trials. Each data point is averaged over 100 tri-
als.

Percent of Paths Changed with n=100, =3 Incorract Soiutions in 100 Trials with n=100, =3

—&8— G-ILE, ratio

-~ B — G-ILE, k-paths
X R-ILE, ratio

- —X— - R-ILE, k-paths

{ —-8— G-ILE ratio
— 8 — G-ILE k-paths
X - R-ILE, ratio
- —X— R-iLE, k-paths

Paths changed (%)
Number of incorrect solutions

(¢) Percent of paths changed. Each data (d) Number of solutions out of 100 trials
point is averaged over 100 trials. that were incorrect.

Figure 6: Plotted results allowing the parameter o to change. For these
experiments we fix n = 100, § = 3, and we vary « € {1,2,5,10}. We do
not include the SSP algorithm in these results because it does not use the
parameter «.

major changes to the topology while minimally affecting the routing tables. It
is likely that many shortest paths that G and G’ have in common will change
to another path during the transition period and then change back. Effective
implementation of the solution requires a method of arriving at these changes
that also minimizes the number of paths that change.

The experimental results showed that these algorithms require a large per-
centage of the edge weights to change. This also makes the topology changes
difficult. The SSP method had significantly worse results for the number of paths
that change, but had a small number of edge weights to change. It would be of
interest to determine the relationship between number of edge weights changed
and number of paths affected. This could be used to generate a more refined al-
gorithm that considers the trade off between topology changes and path changes.
Further algorithm development that attempts to simultaneously minimize both
of these metrics may shed further light upon this relationship.

136

We also have no guarantees on the performance of these heuristic methods.
Other non-convex search procedures may also be applied to this problem such as
genetic algorithms or hill climbing algorithms.

Due to the fact that we need to compute the solution for each path from s
to t over (p,¢), we need a method that allows the enumeration of these paths.
It does not seem reasonable to attempt the solution on every such path, but a
K-shortest paths method for node-disjoint pairs would allow for the enumeration
of the first K of these paths.

References

[1] W.Ben-Ameur and E. Gourdin. Internet routing and related topology issues.
SIAM Journal on Discrete Mathematics, 17(1):18-48, January 2004.

[2] R. Bhandari. Survivable Networks: Algorithms for Diverse Routing.
Springer, 1999.

(3] R. Bhandari. The sliding shortest path algorithm. In Proceedings of the
8" Cologne-Twente Workshop on Graphs and Combinatorial Optimization,
pages 97-101, Paris, France, 2009.

[4] A. Bley. Finding small administrative lengths for shortest path routing. In
Proceedings of the 2% International Network Optimization Conference, pages
121-128, Lisbon, Portugal, 2005.

[5] A. Bley. Inapproximability results for the inverse shortest path problem with
integer lengths and unique shortest paths. Networks, 50(1):29-36, August
2007.

[6] N. Chakravarti. Some results concerning post-infeasibility analysis. European
Journal of Operational Research, 73(1):139-143, 1994,

[7] J. Chinneck and E. Dravnieks. Locating minimal infeasible constraint sets in
linear programs. ORSA Journal on Computing, 3(2):157-168, Spring 1991.

(8] E. de Queirds V. Martins and M. Pascoal. A new implementation of yen's
ranking loopless paths algorithm. 40R: A Quarterly Journal of Operations
Research, 1(2):121-133, June 2003.

(9] M. Ericsson, M. G. C. Resende, and P. M. Pardalos. A genetic algorithm
for the weight setting problem in OSPF routing. Journal of Combinatorial
Optimization, 6:299-333, 2002.

[10] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with traditional IP
routing protocols. /EEE Communications Magazine, 40:118-124, 2002.

(11] B. Fortz and M. Thorup. Internet traffic engineering by optimizing OSPF
weights. In Proc. of the 19" IEEE INFOCOM, pages 519-528, Tel-Aviv,
Israel, 2000.

(12] B. Fortz and M. Thorup. Optimizing OSPF/IS-IS weights in a changing
world. IEEE Journal on Selected Areas in Communications, 20:756-767,
2002.

137

[13] P. Francois, M. Shand, and O. Bonaventure. Disruption free topology re-

[14]

[15]

configuration in OSPF networks. In Proceedings of 2007 IEEE INFOCOM,
pages 89-97, Anchorage, Alaska, USA, May 2007.

J. Hershberger, M. Maxel, and S. Suri. Finding the k shortest simple paths:
A new algorithm and its implementation. 4CM Trans. Algorithms, 3(4):45,
November 2007.

K. Murty, S. Kabadi, and R. Chandrasekaran. Infeasibility analysis for linear
systems, a survey. Inuvited Paper for the Arabian Journal of Science and
Technology, Special Issue on Optimization, 2000.

P. Nilsson. On the inverse shortest paths problem. In Proceedings of 17"
Nordic Teletraffic Seminar, Fornebu, Norway, August 2004.

G. Roodman. Post-infeasibility analysis in linear programming. Management
Science, 25(9):916-922, September 1979,

J. Yen. Finding the k shortest loopless paths in a network. Management
Science, 17(11):712-716, July 1971.

138

