The Improved Sliding Shortest Path Algorithm

Ramesh Bhandari
Laboratory for Telecommunications Sciences
College Park, Maryland 20740

rbhandari@ieee.org

Abstract

Given an undirected weighted graph, and a pair of vertices, s and ¢, connected by
the shortest path, and an edge pqg not lying on the shortest path, what are the
minimal edge weight changes required within the given graph to cause the
shortest path between s and ¢ to pass through edge pq? This is the type of
problem often faced by network administrators in the telecommunication world.
In this paper, we provide an improvement to an existing algorithm called the
Sliding Shortest Path Algorithm to solve such a problem; the approach taken is
one of including negative edge weight changes, not considered in the previous
version. Allowing for negative edge weight changes then augments the
parameter-search space, leading to fewer edge weight changes required to
achieve the objective of rerouting network traffic over the path that includes
edge pq. The algorithm easily extends to the case of constraining the shortest
path to include a given vertex p, instead of an edge pg, by simply collapsing the
edge pq into a single vertex p.

Keywords: shortest path, algorithm, weighted graph, undirected, sliding,
constrained, rerouting, network, minimal, edge weight changes, optimization

1 Introduction

In telecommunication networks, it is often desired to change the link weights to
adjust the traffic flow on the links to alleviate congestion and increase the
throughput [1-4]. The traffic flow is assumed to occur within the network along
the shortest paths, computed from the current values of link weights.
Assignment of link weights and adjustment of their values also occur in the
design of networks, where the given traffic demands (traffic for different source-
destination pairs) are routed along certain given paths, which then become the
paths of least cost upon appropriate link weight assignments [5-8]. The latter

CONGRESSUS NUMERANTIUM 203 (2010), pp. 175-192

type of problem is called the “The Inverse Shortest Path Problem”. In all of the
above problems, several demands are taken into account at the same time.

In a recent paper [9], we addressed the novel problem of rerouting a single
demand (single source-destination pair traffic) via link weight changes, and
provided an algorithm, called the Sliding Shortest Path (SSP) algorithm, to
achieve rerouting. The traffic for the single demand was rerouted through a
given link or a node, not already on the shortest path. The requirement within
the problem was to make link weight changes on as few links as possible to
minimize the convergence time of routes in the changed network operating
under an Open Shortest Path First (OSPF) routing protocol {101, and further to
make the link weight changes as small as possible to reduce the possibility of
other (source-destination) paths changing within the network as well. The link
weight changes considered were all positive increments.

In this paper, we consider the same basic problem, but provide an improved
version of the earlier SSP algorithm by considering negative changes to link
weights as well. Allowing for negative weight changes enlarges the parameter-
search space, and thus improves the solution by enabling less number of links to
be changed. Since our solution to this problem is an improved form of an
existing algorithm, we first revisit the original problem that led to the SSP
algorithm. In Section 2, we define and show the original problem to be NP-
hard, and subsequently provide the full development of the heuristics, starting
with the SSP algorithm with edge cuts (Section 3), which is a precursor to and
serves as the foundation for the subsequent development of the SSP Algorithm
(with finite positive increments) in Section 4 and the improved version in
Section 6. Section 5 provides an analysis of the efficiency of the algorithms
developed in Sections 3 and 4.

2 Problem Definition

Let G=(V,E) denote an undirected, weighted graph, representing a bidirectional
network (e.g., a single autonomous system); V is the set of vertices (or nodes),
and E is the set of weighted edges (or links); weights are positive integers (> 0);
we assume loops and multiple edges are absent in the graph; routing of traffic
demands from one point to another within the network takes place along single
shortest paths. We also make the assumption that graph G is bi-connected (or 2-
connected), i.e., there always exists a simple path, which connects a given pair
of vertices, s and t, and includes a given arc pg [11]. A simple path refers to a
path in which a given vertex is not visited more than once. Unless otherwise
stated, in what follows, the term path refers to a simple path.

176

Let SP(s,t) denote the shortest path between a given pair of vertices s and ¢ in the
given graph G = (V,E); let w; (a positive integer) denote the weight of edge i €
E. Let T, denote a set of edges in the given graph G = (V,E), whose weights are

increased to alter the given shortest path SP(s,t). Let x;, 1 =1,....,I'y denote the
corresponding weight increments. The problem to solve can be stated as:

Given an undirected, weighted graph G = (V,E), and a pair of vertices s, t € V,

and an edge pq € E,
minimize |T| ¢))

subject to arc pg (or arc gp) € SP(s,t),
minimize x, i=1,...,. M (0 <x; <o) ©))

subject to arc pq (or arc gp) € SP(s,t); M = [['y|, the result obtained in Eq. (1)
above.

The primary objective (Eq. (1)) is to identify the minimum cardinality link set
whose weights should be incremented to alter the given route to include edge

pq; the secondary problem (Eq. (2)) is a set of multi-objective functions to
minimize the increments of the weights of the edges found in Eq. (1).

We now state and prove an important theorem:
Theorem 1: The problem in Eq. (1) is equivalent to the following problem:

minimize [T | 3
subject to arc pq (or arc gp) € SP(s,t),

where I'. is interpreted to mean a set of edges € E, which, when cut, alters
SP(s,t) in the desired manner.

Proof: Let INF denote a large number, simulating “infinity” (e.g., a number >
the sum of the weights of all edges in the graph). Let I'y; denote the smallest set
of edges corresponding to the primary objective (Eq. (1)) solution. Let 'y denote
the solution of the equivalent problem, Eq. (3). Letw; i = 1,.., [Ty |, denote the
weights of the edges € T'y. Let each w; be incremented in a minimal fashion

177

such that rerouting over the constraint edge pq is accomplished. Let w;’ denote
the new weight assignments. Let T', denote the set of edges of the desired
shortest path P (which contains the constraint edge pg). Then I', N Ty = &;
otherwise, the desired shortest path can be made shorter by further decrementing
w;’, where edge j € I', m I'y, which is a contradiction because w;’ is already the
smallest new weight determined with minimal increment to the original weight;
and therefore cannot be decreased, i.e., edge j (€ I'y) ¢ I,

Because edge j ¢ I, , incrementing w;” further does not alter the new shortest
path P. Therefore, V k (1 < k< |[y|), for which w,’# INF, increment wy’ 3> wy,’ =
INF. In other words, I'y is also the minimum cardinality solution set where
rerouting is achieved with weights incremented to INF. Therefore, |[y| = [['y]. If
the solution to the problem is unique, I'yy = I'y. If the solution to the problem is
not unique, 'y need not be the same as I'y, but |[y| = [Iy|; otherwise there is a
contradiction. End of Proof (Theorem 1).

Theorem 2: The problem, Eq. (3), is NP- hard.
Proof: Consider the corresponding decision problem (Problem A):

Input: A graph G = (V, E) with non-negative edge weights, two specified
vertices, s and t in V, and a positive integer m and an edge pq € E.

Output: “Yes”, if there are m edges, whose removal makes the shortest path
from s to t pass through edge pg.

It is well-known [12] that the following decision problem (Problem B) is NP-
complete:

Input: A graph G = (V, E) with non-negative edge weights, two specified
vertices, s and ¢ in V, and a positive integer m and a threshold A.

Output: “Yes”, if there are m edges, whose removal makes the length of the
shortest path from s to ¢ at least A.

We reduce Problem B to Problem A through the following polynomial-time
graph transformation: from the given graph G for Problem B, create a graph G’
by adding two new vertices p and ¢ and three new edges: pg, sp and tq. Make

178

sure that the s-7 path through the edge pg has path length' equal to 4. Now if
there are m edges whose removal forces the s-¢ path to include edge pq in graph
G’, it follows that there are m edges whose removal forces the s-7 path in graph
G to become at least h. That is, Problem A is NP-complete, from which it further
follows that problem, Eq. (3), is NP-hard. End of Proof (Theorem 2).

Alternatively, to prove Theorem 2, one can start with the optimization
counterpart of Problem B (finding the minimum cardinality set of edges so that
the s-t shortest path is at least of length k), which is NP-hard [12], and make a
reduction to a similar optimization counterpart (problem, Eq. (3)) by exactly the
same graph transformation as above, as was also done recently and
independently in [13].

Because of the NP-hard nature of the problem, Eq. (3), we have constructed
heuristics, which we describe in the next few sections.

3 The Sliding Shortest Path Algorithm (Using Edge Cuts)

In a given, undirected, weighted graph G = (V, E), this algorithm determines (in
accordance with a certain cutting criterion) the minimal cardinality set of edges,
which, when cut, force the shortest path between vertices s and ¢ to include a
given constraint edge pq. It is assumed that 1)) a simple path, connecting vertices
s and ¢, and including edge pq, exists; ii) the shortest path between vertices s and
t, and including edge pg. is unique.

"Let T, denote the desired minimal cardinality set of edges. Let SP(s,t) denote
the shortest path between vertices s and ¢. Then the following steps determine

Fm“:

1) AssignTyn=9.

2) If the initial shortest path between vertices s and ¢ includes edge pg,
terminate; otherwise, go to Step 3.

3) Compute the shortest pair of vertex-disjoint paths [14, 15], one path
connecting s to one end of the constraint edge pq (call it SPI), and the
other connecting ¢ to the other end of the constraint edge pg (call it
SP2); the vertex disjoint path algorithms compute paths SP/ and SP2
simultaneously and automatically determine whether SPI is a
connection from s to p or s to g; if SP! turns out to be a connection
from s to p, SP2 is a connection from ¢ to ¢, and vice versa; denote their
lengths by I(SPI) and [(SP2), respectively; length of a path is defined as
the sum of the weights of the edges comprising the path; I(Py) = I[(SP1)

"If there is already an s-t path of length equal to 2in G, thenseth=h-¢in G’
to break the tie, where ¢ is an infinitesimally small number.

179

+ wp, + I(SP2), where P; denotes the desired SP(s,t) path, which
includes edge pg; this path is composed of path SP1, edge pqg, and path
SP2; w,, is the weight of the edge pq. I(Py) is determined in the original
graph and is a value fixed throughout the algorithm.

4) Initialize i =1.

5) Assign (i) = &, where T’ (1) denotes the ith set of edges, whose weights
are changed.

6) Find the first edge of SP(s,t), which does not overlap with SPI (cut-
edge selection criterion); cut this edge from the graph; denote this edge
by y.

7y SetI'()=T@G) vy ifi=2and [L()| > |Tonia, terminate, and g0 to Step
12.

8) Compute new SP(s,2) in the modified graph.

9) If the new path does not contain edge pg, go to Step 6; otherwise,
check for another path (not containing pg) whose length is equal to

a. Increment w,, by 1.
b. Compute new SP(s,z).
C. I I(SP(s,1)) > lPy), decrement w,, by 1 and go to Step 10;

if I(SP(s,t)) = I(Py), decrement Wpq by 1, and go to Step 6.

10) Set i =T ();seti=i+1.

11) If i< 3, repeat Steps 5-9 in the original graph, replacing SP(s,t) with
SP(1,s), and SP1 with SP2; otherwise, terminate; SP(t,s) denotes the
shortest path from ¢ to s, which is taken to be SP(s t) in the reverse
order.

12) If [T(D)| < [T'(2)), set Ty = I(1); if IT(2)] < [T(1)], set T = [(2); if
T(1)| = [T(2)}, set Ty = I(1) or I(2).

If the SP(s,t) path already contains edge pg, the algorithm terminates, returning
I'nin = @; otherwise it performs two runs of an iterative process. The iterative
process consists of trimming the graph (cutting one edge at a time) until the
shortest path between s and ¢ “slides” over the given constraint edge pg. In the
first run of the iterative process (Steps 1-9), an edge to cut in a given iteration
(Step 6) is determined by comparing the s to ¢ shortest path SP(s,z) with path
SPI and finding the first edge of SP(sz), which does not overlap with SP1. This
edge is then removed from the graph and SP(s,?) is recomputed in the modified
graph; the process of comparing and cutting the first non-overlapping edge and
re-computing the shortest path is repeated until SP(s,t) passes through the
constraint edge pq (Steps 6-9). When this happens, the first run of the iterative
process terminates. Note that in Step 9, a check is made to ensure there is no
other path of the same length as the desired path, P,

180

runs of the iterative process of the algorithm yield two cut-sets, I'(1) and I'(2),

The iterative process in each run converges without ever disconnecting the
Source vertex s from the termination vertex ¢ (see Theorem 4 below). In the first
run (i=1), the final shortest path from s to ¢ that passes over edge pq is found to
be given by

SP(s,t}= SP1 + arc pq (or gp) + SP2’,

where SP2’ = SP2 in the reverse order (see Theorem 3 below); the two choices
for the SP(s,z) solution are due to the fact that edge Pq can be traversed in the
direction p to g or ¢ to D.

In a similar way, when the iterative process is repeated for i=2, the final shortest
path is given by

SP(t,s) = SP2 + arc qp (or pg) + SPI”,
where SP1’ = SP] in the reverse order.
Below we provide proofs:

Theorem 3: In a given graph G = (V, E), the shortest path from s to t over the
constraint edge pq (if it exists) is comprised of the edge pq (traversed along the
ar¢ pq or arc gp) and the shortest pair of vertex-disjoint paths, one path
connecting s to p (or g) and the other connecting g (or p) to ¢,

Proof: Let us assume that a path from s to 1 passing through the constraint edge

Pq exists. The existence of a path from s to 7 that passes over the constraint edge
Pq necessarily implies that it is made up of either a path from s to P, arc pq, and
a path from q to ¢, or a path from s to g arc gp, and a path from p to . Since any
computed shortest path between a pair of vertices in a given graph has to be a
simple path, the paths s to pandgtor (or alternatively s to g and p to t) must
necessarily be vertex-disjoint, i.e., have no vertices in common.

Furthermore, because the computed path over edge pg is a shortest path, the
paths s to p (or g) and g (o1 p) to ¢ must necessarily comprise the shortest pair of

181

vertex-disjoint paths; shortest means that the sum of the individual lengths of the
two paths is the smallest among all possible pairs of vertex-disjoint paths. End
of Proof (Theorem 3).

For computation of shortest pair of vertex-disjoint paths, see Refs. [14, 15].

Theorem 4: In the given algorithm, the process of cutting one edge at a time
until the shortest path from s to ¢ slides over edge pg does not disconnect 7 from
5, 1.e., the algorithm always converges to a feasible solution.

Proof: During each iteration of the iterative process (e.g., in the first run of the
algorithm), when an edge is cut,

1) Path SPI remains intact: The edge that is cut off is the first edge of
SP(s,2) that does not overlap with SPI. Therefore, it does not belong to
the set of edges that comprise SPI. Consequently, SP] remains intact.

2) Path SP2’ remains intact: The cut edge emanates from SPI. It also
cannot belong to the set of edges that comprise SP2’, because SP2 is
vertex-disjoint from SP1, i.e., SP2’ is at least one edge apart from SPI.
Therefore, like SP1, SP2’ remains intact.

3) Edge pq is not cut: When the shortest path is first found to contain edge
pg (the first non-overlapping edge of path SP(s,1)), the algorithm either
terminates or the shortest path SP(s,z) changes to one that does not
include edge pg. Therefore, edge pq is never cut.

Because SP1 and SP2’, computed at the outset, remain unaffected during the
iterative process, and edge pq is never cut, a path always exists from s to ¢ via
edge pq. Because a path over edge pg from s to ¢ is always available during the
iterative process, the algorithm will always terminate. End of Proof (Theorem

4).

Theorem 5: Path SP(s,t) after termination of the algorithm comprises SPI,
SP2’, and edge pq (arc pg or gp)

Proof: At termination, SP(s,) passes through edge pg. By Theorem 3, this final
SP(s,t) must comprise the shortest pair of vertex-disjoint paths in the final
truncated graph and edge pqg (arc pq or gp). Because paths SPJ and SP2’ exist in
this (final) truncated graph (see proof, Theorem 4) and SPI ad SP2’ comprise
the shortest pair of vertex-disjoint paths in the original graph, SPI and SP2’
must necessarily be the shortest pair of vertex-disjoint paths in this final
truncated graph (which is a sub-graph of the original graph). End of Proof
(Theorem 5).

182

In a similar way, proof is constructed for the case when SP(1,s) is compared
with SP2. The cut-set obtained for this case can be different.

Example

Refer to Figure 1. Assume s = A and 7 = H, and p=B and ¢=C. SP(s,t) = ADFGH
oflength =1+2 + 1 + 3 = 7; it does not include the constraint edge pg. SP1 =
ADFB and SP2 = HC comprise the shortest pair of vertex-disjoint paths, one
connecting A to B and the other connecting Hto C. I(SP/)=1+2 + 3 = 6,
I(SP2) = 6; w,, = 2. [P = I(SP1) + w,, + I(SP2) = 14. The first part of the
algorithm uses path SPI as the reference path. SP(s,z) deviates from SPI at
vertex F and the first non-overlapping edge of SP(s,1) is edge FG. Upon deleting
this edge from the graph, the recomputed SP(s,z) is ADFBGH. This path
deviates from SPI at vertex B again, and the first non-overlapping edge is BG.
Upon deleting this edge, we find that the new, computed SP(s,t) path is ADFH;
here the first edge of ADFH that deviates from SPI is FH. Upon deleting this
edge and recomputing SP(s,t), we find SP(s,t) in the modified graph is
ADFBCH, which traverses the desired edge BC.

3 F

Figure 1 A graph of 8 vertices and 12 edges with their weights indicated.

At this point (Step 9), we check to see if there is another path of the same length,
so we change wpc to wge =2 + 1 = 3, and recompute the shortest path, which
turns out to be the same: ADFBCH. However, K(SP(s,1)) (= 15) > I(Pp (=14),
which implies that the first part of the algorithm corresponding to the shortest
path from s to ¢ (SP(st}), terminates; there is no other path of the same length as
the Jength of the desired shortest path. Reset Wac t0 its original value of 2. T'(1) =

183

{FG, BG, FH}, which comprises the three edges that were cut to force SP(s,?) to
include edge BC.

Using SP(1,s) = HGFDA and SP2 = HC as the comparison path in the second
part of the algorithm, the first non-overlapping edge to cut is HG. This leads to
SP(1,s) = HFDA in the truncated graph. This path deviates from SP2 at vertex H,
so the first non-overlapping edge HF is cut. At this point, there are two
possibilities for the new shortest path: i) HCGFDA ii) HCBFDA. These are of
equal length (=13). Let us suppose that the shortest path algorithm (e.g., the
Dijkstra algorithm) selects path HCBFDA, which includes the desired edge BC.

We now invoke Step 9 to test if there is another path of the same length.
Changing wgc to 2 +1 =3 leads to the shortest path being HCGFDA of length =
14; i.e., ISP(s,2)) (= 14) = I(Py) (=14). We decrement wac back to wge = 2, and
apply Step 6, which yields edge CG as yet another edge to be cut. The new
computed, SP(t,s), after the cut is now HCBFDA, the desired path. Invoking
Step 9 at this point yields a path with I(SP(s,1)) (= 15) > I(Py) (=14). The second
run of the algorithm terminates at this point. I'(2) = {GH, FH, CG}. [F(2)| =
[T(1)} =3; either solution may be selected, although the tie may be broken by
additional criteria such as the number of shortest paths between other pairs of
vertices impacted, and so forth.

4 Sliding Shortest Path Algorithm (Using Finite Weight
Increments)

This algorithm is identical to the previous algorithm, except that, instead of
cutting the first non-overlapping edge (see Step 6 of the algorithm in Section 3),
one increments its weight:

X =UP)-UP) +e,

where x; is the weight increment for the first non-overlapping edge encountered
in the jth iteration of Steps 6-9 of the algorithm; I(P)) is the length of the
corresponding shortest path (SP(s,z) or SP(1,s), as the case may be); e is an
infinitesimally small positive number. For the integral weights, e = 1. The
increment defined above is the minimal amount needed to make path P; greater
(in length) than the desired path Py as a result, the latter becomes the shortest
path in the final (modified) graph.

In Figure 1, for the case of p=B and g = C, changing lr; from 1 t0 9, Iz from 3

to 6, and Iry from 10 to 12 (in accordance with the above formula) changes
SP(s,t) from ADFGH to ADFBCH in the first run of the algorithm; changing lgy

184

from 3 to 11, Igy from 10 to 12, and I from 4 to 5 (in accordance with the
above formula) changes SP(z,s) from HGFDA to HCBFDA in the second run of
the algorithm.

5 Efficiency (or Time-Complexity)

In Steps 1-9 of the algorithm described in Section 3, Step 2 is O(V]P), the
efficiency of a shortest path algorithm, like the Dijkstra algorithm [16] Step 3,
which computes the shortest pair of vertex-disjoint paths is also O (|V[). Steps
6-9 are repeated as many times as the edges are cut or modified in weights. Step
6, which compares two paths is of O(V). Step 8 (computation of shortest paths)
is O (|V), and Step 9 is at most of O(|VP). The time- -complexity of the Dikstra
algorithm, which is of O(|V[*), dominates in Steps 6-9 and the overall efficiency
of the Sliding Shortest Path algorithm (denoted by K) is determined by the
efficiency of the Dijkstra a]gonthm times the number of times (denoted by 7) it

has to be run , i.e, K is O(n]V])

The worst-case scenario corresponds to the case when almost all the edges
within the given graph (excluding those that comprise paths SP7, SP2 and edge
pq) are cut or assigned new weights. As |V] increases, this number 7 is of O(|E}).
Below we provide the algorithm efficiency for the various graph types:

1) Dense Graphs: |E] is O(}Vlz) = K (algorithm efficiency) is O(|V]*) (worst-
case scenario).

2) Sparse Graphs (almost tree-like): |E| is O(|V]) = K (algorithm efficiency) is
O(]V]) (worst-case scenario).

Telecommunication networks are sparse and on the average, the number of
edges to cut is O(x), where x is the edge-connectivity, i.e., the maximum
number of edge-disjoint paths that exist between the given vertices s and ¢ (or
equivalently, the minimum number of edge cuts that disconnect s from t). The
order of magmtude of k, for sparse networks, is therefore unity, leading to K
being of O(JV[*), on the average. Note that, because the algorithm efficiency is
dependent upon the efficiency of the Dijkstra algorithm, the algorithm efficiency
is further improved with more efficient implementations of the Dijkstra

algorithm (see, e.g., Ref. [16]).

185

6 The Sliding Shortest Path Algorithm (Finite Weight
Changes (Positive and/or Negative))

When negative weight changes are permitted, they are restricted by the fact that
the lowest allowed weight on any edge is unity. Consequently, in Eq. (2), the
lower bound of O is replaced by -w;, where w; is the weight of the edge i.
Because x;’s can be negative, the problem in Eq. (1) is no longer reducible to the
problem in Eq. (3), which separated earlier from Eq. (2) as an independent
problem. The objective in Eq. (2) also changes now to one of minimizing the
absolute value of x;. Eq. (1) and Eq. (2) are very much interrelated, making the
solution of the combination of Eq. (1) with Eq. (2) (in its new form) even more
intractable. Therefore, we resort again to heuristics and give below a version of
a heuristic, which is based on an extension of the previous algorithms:

In a given, undirected, weighted graph G = (V, E), this heuristic determines a
minimal cardinality set of edges (primary objective), with minimal edge weight
changes (positive or negative) such that the shortest path between vertices s and
t now includes a given constraint edge pq. It is assumed that i) a simple path,
connecting vertices s and ¢, and including edge pg, exists; ii) the shortest path
between vertices s and #, and including edge pgq, is unique; iii) the modified
graph after weight changes has non-zero positive weights.

Allowing for multiple solutions, let I'yin(f), j = 1,...n, denote the n possible
solutions (of the same cardinality) for the required set of edges. Let SP(st)
denote the shortest path between vertices s and f. Then the following steps
determine I';,(7) and the individual edge weight changes:

1) Initialize n=1; if the initial shortest path SP(s,?) between vertices s and ¢
contains edge pq, terminate with n = 1 and I'y;n(1) = &; otherwise; go
to Step 2.

2) Compute the shortest pair of vertex-disjoint paths, one path connecting
s to one end of the constraint edge pg (call it SPI), and the other
connecting ¢ to the other end of the constraint edge pg (call it SP2); the
vertex disjoint path algorithms compute paths SP! and SP2
simultaneously and automatically determine whether SPJ/ is a
connection from s to p or s to g; if SPI turns out to be a connection
from s to p, SP2 is a connection from ¢ to ¢, and vice versa; denote their
lengths by I(SPI) and I(SP2), respectively; the length of a path is
defined as the sum of the weights of the edges comprising the path;
I(P) = I(SP1) + wp, + I(SP2), where Prdenotes the desired SP(s,t) path,
which includes edge pq; path Pris composed of path SP/, edge pg, and
path SP2; w,, is the weight of the edge pg. I(P)) is determined in the
original graph and is a value fixed throughout the algorithm.

186

3) Initialize i =1.

4) Assign [['yn(1)] = .

5) AssignT =g,

6) Define § = Py - I(SP(s,t}) +1, where I(SP(s,t)) denotes the length of
the current shortest path, SP(s,t).

7) Determine { PN {SP(s,1)}, the set of edges common to path Prand the
current shortest path SP(s,z). Define set] = {P] — (P} {SP(s,1)).

Denote by ¢ the sum of the weights of the edges € 1. If o - 1l <4, goto

Step 13.

8) Find a set (denoted by I'») of minimal cardinality formed from the set 1,
such that the edge weight decrements within the set yield a path just
shorter than SP(s,); a total decrement equal to § (determined in Step 6)

is required. We determine I, by first selecting the edge a € I, with the
largest weight and allowing for the maximum possible negative edge
weight change of -w, + 1, where w, denotes the weight of edge a, and
then selecting the next largest weight edge from I, decrementing its
weight also as much as possible (in the same manner), and continuing
until the decrements add up to & in this edge weight decremental
process. Let /’(P) denote the new length of path P; at the end of this
decremental process; / (P = U(P) - 5. Assign T, = I';. Compute
SP(s,t). If l(SP(s,t)) = 1 '(Pp), go to Step 10; otherwise, go to Step 9a.
9)) Find the first edge of SP(s,t), which does not overlap with path SP1;
- denote this edge by p; denotes its weight by w,.
b) Set T’y = T, U p; set W, = w, + &’ (calculated as in Step 6, but with
I(Py) replaced with (P
¢) Compute SP(s,t) in the modified graph.
d) IFUSP(s,0)) # 1 ‘(Py), go to Step 9a; otherwise, go to Step 10.
10) Check for another path (not containing edge pg) whose length is equal

to [’(Py):
a. Increment w,, by 1 and compute SP(s,1).
b. If SP(s,2) > 1 "(Py), decrement Wpg by 1, go to Step 11; if

I(SP(s,1)) = I’(Py), decrement Wy by 1 and go to Step 9a.

11) Define I'e=T UT, If ITc] < [Tamin(1)], delete all previous solutions and
set I'ipin (1) =T if [T] = Tmin(1)), set n=n+ 1 and FNin(n) =T

12) Reset any link weights changed in Steps 8 and 9 to their previous
values, and recompute SP(s,7) and § (defined in Step 6).

13) Find the first edge of SP(s,t), which does not overlap with path SP1;
denote this edge by y; denotes its weight by w,

14) SetT' =T U y; setw, =w, + &; if [T| > Tmin(1), go to 17.

15) Compute SP(s,¢) in the modified graph.

16) If the new path does not contain edge pq and |I'| < [T (1)}, go to Step
6; if the new path does not contain edge pg and |I'| = [(D), go to

187

Step 17. If I(SP(s,t)) = I(Py), check for another path (not containing pq)
whose length is equal to I(P):
a. Increment w,, by 1 and compute new SP(s,?).
b. I USP(s,t)) > I(Pp, decrement Wpq by 1. If [T < [Tpmin(1)], delete
all previous solutions and set Iy (1) = T otherwise, setn=n
+ 1, set I'in(n) = " and go to Step 17; if I(SP(s,2)) = I(Py),
decrement w,, by 1, compute & (defined in Step 6) and go to
Step 13.

17) i=i+1.

18) If i < 3, reset the edge weights to the weights in the original graph,
replace SP(s,t) with SP(t,s), and SP1 with SP2 (SP(1,s) denotes the
shortest path from ¢ to s, which is taken to be SP(s, t) in the reverse
order), set I' =, compute J, and go to Step 13; otherwise, terminate.

Here the parameter-search space is expanded to include negative weight changes
as discussed earlier. A solution with negative weight changes is explored for in
the beginning via Steps 7 and 8. The idea is to make the desired path Py shortest
by decrementing the weights of the edges of the non-overlapping part of the
desired final path: {P; — {PJ~{SP(st)}. The process of decrementing the
weights starts with the edge with the largest weight, and proceeds in a
descending order in order to minimize the number of edges over which the path
length differential § (Step 6) is spread. That is, the edge weight decrements,
when they occur, reduce the length of the desired shortest path P; by 6. While
the path Py, in this process, is made shorter than the shortest path, SP(s,t), there
is no guarantee that Py is the shortest path in this modified graph because some
of the s-7 paths that were shorter than path P; before the weight changes could
remain shorter than P; after these weight changes (which are all negative).
However, Steps 9 and 10, which are based on the concepts of the algorithms in
Sections 3 and 4, ensure that path P; remains the shortest path in the modified

graph.

A new solution (which is a mix of positive and negative weight changes) is
sought for in each subsequent iteration, starting with Step 12. Steps 13-16 are
identical to the earlier algorithm (Section 4). A new shortest path is calculated
(Step 15) after assigning a positive weight increment. Steps 6-11 are repeated,
with the new solution replacing the old solutions, if it is better (reduced
cardinality). If the new solution is equally good (solution with the same
cardinality), it is added to the set of previous solutions (Step 11).

Each run of the algorithm terminates whenever [> T min(1)] (Step 14), or when
[T} = [Tmin(1)] and SP(s,2) does not include edge pg (Step 16).

188

Applying the algorithm to the example of Figure 1, [(SP(s,t)) =1 +2 + 1 + 3 =
7,0 =8. {Pf} {P#{SP(s,t)] = {BF, BC, CH}. Steps 8 -10 yield a solution:
Fmin(1) = {CH(-5), BF(-2), BC(-1)} in Step 11; the numbers in parentheses
indicate welght changes, which are negative here. Steps 12, 13, and 14 (which
define the start of a new iteration) lead to an increment of 8 in the value of Wrg.
Recomputed SP(s,t) = ADFBGH (Step 15), which yields a new J value of 3
(Step 6). Steps 7 and 8 then yield a decrement of w2z by 3, leading to a solution:
{FG(+8), CH(-3)}, which replaces the earlier result for I'p;,(1) (Step 11). In the
next iteration (Steps 12, 13, and 14), I' = {FG (+8), BG(+3)}. The recomputed
path SP(s,z) = ADFGH (Step 15) does not include edge pg and |I'| = [['in(1)]. So
the first run of the algorithm using SPI as the reference path terminates (Step
16), and a new run, using SP2 as the reference path, begins via Steps 17 and 18.

Steps 13 and 14 yield I' = {GH(+8)}; the recomputed SP(1,s) = HFDA (Step 15).
Steps 6-8 give d =2 and I'y, = {CH(-2)}; T, = I, = {CH(-2)}. PP=1IPy-6 =
14 - 2 = 12. Recomputed SP(1,5) = HCGFDA or HCBFDA;, I(SP(t,s)) = 12 (=
I(Pp). Step 10a leads to wy, = 2 + 1 = 3, and the recomputed SP(1,s5) =
HCGFDA of length = 12 (=(I'(Pp); wpe =3 - 1 = 2. Step 9 gives p = CG, and T,
=T, U p= {CH(-2), CG(+1)}. Step 10 gives I(SP(1,s)) > I’(P)). Step 11 yields T'¢
=T UT = {GH(+8), CH(-2), CG(+1)}. [Ic| > [T'min (1)], s0 it is ignored. In the
next iteration, Steps 12, 13, and 14 give I' = {GH(+8), FH(+2)}. Step 15 can
yield SP(t,s) as HCBFDA or HCGFDA. Suppose SP(t,s) = HCBFDA, which
includes edge BC, i.e., (SP(1,s)) = I(Py). After incrementing w,, by 1 (Step 16a),
SP(1,s) = HCGFDA; I(SP(1,5)) = I(Fy)). After decrementing wp, by 1 (Step 16b),
Steps 13 and 14 yield T’ = {GH(+8), FH(+2), CG(+1)}. || > [[min(1)], s0 the
algorithm terminates via Steps 17 and 18, with a single solution: I'p(1) =
{FG(+8), CH(-3)}.

The above solution gives fewer links whose weights should be changed as
compared to the solutions obtained from the application of the algorithm
(positive increments only) given in Section 4. Therefore, it is an improved
solution. Note that any solution obtained from the application of this algorithm
that includes only positive increments will exactly be the same as the solution
obtained from the algorithm in Section 4, as the latter is incorporated into the
former.

Efficiency: This algorithm has basically the same number of iterations as the
algorithms in Sections 3 and 4, with the difference, however, that, in each
iteration, we have additional steps (Steps 6-11), which are needed to expand the
parameter search space to include negative values for weight changes. Step 7 is
at most O(|V}?) and Step 8 is O(|V]), but Step 9 is an iterative process (very akin
to the algorithms in Sections 3 and 4), nested within the main algorithm.

189

Denoting by 77; and 77, the number of times the shortest path algorithm such as
the Dijkstra algorithm has to be run in the main algorithm and within the nested
iterative process, the efficiency of the algorithm above is ;1 O(IV]Z). It is
worse than the efficiency of previous versions (Section 5), but still is of
polynomial-time efficiency. For sparse telecommunication graphs, 7; and 7, are
each of order unity, making the algorithm O([V).

7 Summary and Discussion

In this paper, we have presented an improved version of the earlier heuristics,
called the Sliding Shortest Path Algorithms, to solve the problem of determining
the minimal number of edges whose weights should be changed and by how
much minimally. To give a background and to lay the foundation for the
improved version, a full development of the earlier versions is given, along with
proofs (not given earlier) and efficiency computations, to put them on a solid
footing. The aim of these algorithms is to alter the route of a given flow to
include a specified edge pg; the case of the route including a specified vertex is
obtained simply by collapsing the edge pq into a single vertex p.

The Sliding Shortest Path Algorithm (using edge cuts) identifies a set of edges in
accordance with a certain edge-cutting criterion to change the shortest path to
include a given edge pg, while the algorithm in Section 4 (using finite weight
increments) is exactly the same algorithm, except that, instead of cutting an
edge, it calculates the minimal .edge weight increment. Therefore, the set of
edges to make increments on is the same set of edges that are cut to achieve the
desired rerouting. The improved version in Section 6 expands the parameter
search space to include negative edge-weight changes, which are bounded by the
requirement that the minimum weight permissible on any edge in the graph is
unity.

Because the solution parameter space has been expanded, any solution obtained
from the improved version can only get better, as demonstrated by the example
of Figure 1. The solution, in general, is an admixture of positive and negative
increments; the extreme case is a solution comprising solely negative increments
or positive increments. When the solution consists of positive increments only,
the solution coincides with the solution obtained using the algorithm in Section
4 (its predecessor). Like the predecessor, the algorithm always converges,
finding a feasible solution in polynomial time. Although slightly more involved
than its predecessor, the algorithm is still simple, easy to implement, and fast.
For sparse networks, it is expected to basically mimic the performance of a
shortest path algorithm like the Dijkstra algorithm. The algorithm has been

190

thoroughly tested and its MATLAB implementation has been successfully
created and tested on larger graphs.

Note that all versions of the Sliding Shortest Path Algorithm (Sections 3, 4, and
6) accomplish the goal of rerouting the traffic flow of interest over a specific
edge or vertex. Algorithm in Section 3, by virtue of cutting edges, is expected to
cause maximum chaos in a network; chaos here is measured by the number of
other shortest paths affected, i.e., shortest paths for other pairs of vertices in the
network, and thus other flows in the network. Algorithms in Sections 4 and 6
cause less chaos as compared to the algorithm in Section 3, but the improved
version (section 6) is to be preferred because of the less number of edges to be
changed, which implies reduced network convergence time when the algorithm
is applied to a real-life network operating under the OSPF protocol. A detailed
statistical analysis of the performance of these algorithms as applied to different
types/sizes of graphs would be part of any future work.

It is also important to remark that the algorithms can be extended easily when
the assumption of uniqueness of the desired (constrained) shortest path Py
between vertices s and ¢ is dropped. Non-uniqueness implies there are multiple
SP! paths and/or multiple SP2 paths. This just means that the final ¢ to s path
could be different from the final s to ¢ path, although in each case the edge pg
would be traversed, as desired.

Furthermore, it should be pointed that the solution to the problem posed in this
paper may be further improved by varying the lengths of the reference paths SPJ
and SP2, i.e., by not restricting them to be the shortest pair of vertex-disjoint
paths.

Acknowledgments: The proof of Theorem 2 is based on a suggestion by Prof.

Samir Khuller, whose earlier work on the NP-hardness of a related problem
(most vital arcs problem) was brought to the author’s attention by Prof. Leonard
Schulman. The author is also thankful to Sam Weyerman for helpful discussions
on NP-completeness and to Ann Cox for her comments.

191

References

(1]

(2}

(3]

(4]

(3]

(6]

(7

(8]
191
{10]
(11]

[12]

[13]
[14]
[15]

[16]

B. Fortz and M. Thorup, Internet Traffic Engineering by Optimizing
OSPF Weights, Proc. of the 19" IEEE INFOCOM, Tel-Aviv, Israel
(2000) pp. 519-528.

B. Fortz and M. Thorup, Optimizing OSPF/IS-IS Weights in a
Changing World, IEEE Journal on selected areas in communication,
20 (2002) pp.756-767.

B. Fortz, J. Rexford, and M. Thorup, Traffic Engineering with
Traditional IP Routing Protocols, IEEE Communications Magazine, 40
(2002) pp.118-124.

M. Fricsson, M.G.C. Resende, and P. M. Pardalos, A Genetic
Algorithm for the Weight Setting Problem in OSPF Routing, L
Combinatorial Optimization, 6 (2002) 299-333.

W. Ben-Ameur and E. Gourdin, “Internet Routing and Related
Topology Issues”, SIAM Journal of Discrete Mathematics, 17(1)
(2003) pp.18-49.

A. Bley, Inapproximability Results for the Inverse Shortest Paths
Problem with Integer Lengths and Unique Shortest paths, ZIB Report
05-04

A. Bley, Finding Small Administrative Lengths for Shortest Path
Routing, Proc. of 2" International Network Optimization Conference,
Lisbon, Portugal (2005) pp.121-128.

P. Nilsson, On the Inverse Shortest Path Algorithm, Proc. of the 17"
Nordic Teletraffic Seminar (NTS 17), Fornebu, Norway (2004).

R. Bhandari, The Sliding Shortest Path Algorithms, Proc. of the 8%
Cologne-Twente Workshop on Graphs and Combinatorial
Optimization, Paris, France (2009) pp. 95-101.

J. Doyle, Routing TCP/IP, Volume I, Cisco Press (2001).

R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Tl heory,
Algorithms, and Applications, Prentice Hall, 1993,

A. Bar-Noy, S. Khuller, and B. Schieber, The Complexity of Finding
Most Vital Arcs and Nodes, Technical Report CS-TR-3539, Institute
for Advanced Studies, University of Maryland, College Park, MD
(1995).

B. Engels and G. Pardella, A Note on the Complexity of Sliding Shortest
Paths, University of Cologne preprint: zaik2009-594 (unpublished).

R. Bhandari, Survivable Networks: Algorithms for Diverse Routing,
Kluwer Academic Publishers, 1998.

J. W. Suurballe, Disjoint Paths in a Network, Networks 4 (1974)
pp-125-145.

M. Gondran and M. Minoux, Graphs and Algorithms, John Wiley,
1990.

192

