
Optimal Physical Diversity Algorithms and Survivable Networks

Ramesh Bhandari
AT&T Laboratories, Rm. 2B-41 OA

Crawfords Corner Road
Holmdel, NJ 07733, USA
Tele. No. (908)949-0693
Fax. No. (908)949-4364

rbhandari@att.com

Abstract

One way to improve the reliability of a network is
through physical diversity, i.e., via routing of trafic
between a given pair of nodes in the network over two or
more physically-disjoint paths such that if a node or a
physical link fails on one of the disjoint paths, not all of
the trafic is lost. Alternatively, enough spare capacity
may be allocated on the individual paths such that the
lost traflc due to a node or physical link failure can be
routed immediately over the predetermined paths. In this
paper, we present optimal algorithms for K-disjoint
paths (K22) in a graph of vertices (or nodes) and edges
(or links). These algorithms are simpler than those given
in the past. We discuss how such algorithms can be used
in the design of survivable mesh networks based on the
digital crossconnect systems {DCS). We also discuss the
generation of optimal network topologies which permit
K>2 disjoint paths and upon which survivable networks
may be modeled.

1. Introduction

As fiber is increasingly deployed in networks,
reliability of a network is being called into question
more than ever before. This is due to the fact that as
more traffic is transported over the high bandwidth fiber
network, any span (physical link) cut or node failure
results in the loss of a large volume of traffic. One way
to increase the reliability of a given network is through
physical-diversity, i.e., via routing of traffic between a
given pair of nodes in the network over two or more
physically-disjoint paths such that if a node or a physical
link (span) fails on one of the disjoint paths, not all of
the traffic is lost. Alternatively, enough spare capacity
may be allocated on the individual paths such that the

0-8186-7852-6/97 $10.00 0 1997 IEEE 433

lost traffic due to a node or physical link failure can be
rerouted over the predetermined disjoint paths.

Since most networks are bidirectional, we will
represent networks (or graphs) by vertices (or nodes)
and edges (or links). Unless otherwise stated, we will
assume that multiple edges (two or more links between
the same pair of nodes) are absent. Fig. 1 is an example
of a bidirectional network of 8 nodes and 13 edges; each
edge is the equivalent of two oppositely directed

A z

F
3

E

Fig. 1
are the edge lengths.

A bidirectional network; the numbers

arcs, each of length equal to the edge length; length here
has the general meaning in that it may represent the
physical length of the edge (or link) in the network, or
may be the cost of using the edge in transmission of data,
and so on. A path or route between a pair of vertices is a
sequence of arcs connecting them. When searching for
diverse routes between a given pair of vertices, it is
generally desirable to find the set of paths whose sum is
a minimum. For example, if the length of an edge is the
length of fiber over that physical link, then the optimal
set of paths uses minimal amount of fiber between the
pair of nodes. Similarly, if the length of a link in a graph
represents cost of provisioning services along that link,
then the optimal set of paths represents diverse routes

mailto:rbhandari@att.com

over which the cost of diverse provisioning of services
would be a minimum.

The paper is divided into 5 sections. Section 2
reviews the simple (but erroneous) approach of finding
physically-disjoint paths and the pitfalls involved in
using this approach. Section 3 gives the correct
algorithms for shortest (K22) edge-/vertex-disjoint paths.
These algorithms are novel and simpler than those given
in the past [1,2]; furthermore they are easily
implementable. Section 4 focuses on the utility of
disjoint paths in the design of survivable networks. In
particular it is shown that transporting traffic over more
than two disjoint paths can sometimes be more
economical and efficient than using a disjoint pair of
paths. To the author’s knowledge the network design
approach given here, which involves the use of more
than two disjoint paths, has not been considered before.
In addition, given the number of nodes in a network, we
discuss how optimal terrestrial networks permitting K>2
disjoint paths may be constructed.

is (ABCGZ, AEFDZ) with a total length equal to 11. In
effect, the simple approach algorithms when applied to
Fig. 1 fail to provide the optimal pairs of disjoint paths
between A and Z. In general, such types of algorithms
may or may not provide an optimal set of disjoint paths.

2. False alarms about nonexistence of paths when such
paths actually exist.

This shortcoming is illustrated via Fig. 2. Assuming
ABCZ is the shortest path between the given pair of
vertices A and Z, the simple approach algorithm fails to
find a vertex-disjoint pair, even though two such pairs
(ABFZ, ADCZ) and (ABFZ, ADCEZ) exist. Clearly, any
practical implementation of the simple

D E
n n

2. Simple approach disjoint paths
algorithms and shortcomings

The simple approach algorithms consist of finding
first the shortest path between the pair of vertices under
consideration, and the second shortest path which is
disjoint from the first, the third shortest path which is
disjoint from the previous two, and so on, depending
upon the number of disjoint paths required. Focusing on
a pair of disjoint paths, if link-disjointness is desired, all
the links of the first shortest path are removed from the
graph, and the shortest path algorithm rerun in this
reduced graph. Likewise, if the second path is to be
vertex-disjoint, then all the links incident on the vertices

U
F

Fig. 2 The simple approach algorithm fails to
produce a vertex-disjoint pair of paths between
A and 2.

approach algorithm carries with it the risk of generating
false alarms about the nonexistence of disjoint paths
when such paths actually exist. In other words,
automating such an algorithm for diverse provisioning
of services in real time should be avoided, since a
customer desiring diverse paths may be erroneously
informed that such a service cannot be provided to him.

(except the endpoint vertices) of the first shortest path
are removed. These algorithms are illustrated with

3. Shortest K (22) disjoint paths algorithms

reference to Fig. 1. Let us suppose a pair of disjoint paths
is desired between vertices A and Z . Then the shortest
path between A and Z is ABCDZ of length 4. The
second shortest path edge-disjoint from the first is
AEBFZ of length 7, implying a total length of 11 for the
pair of edge-disjoint paths. Similarly, the shortest path
vertex-disjoint from path ABCDZ in Fig. 1 is AEFZ=8,
implying a total length of 12 for the pair of vertex-
disjoint paths. The above simple approach of finding
disjoint paths, however, has the following shortcomings:

Algorithms for shortest K(22) disjoint paths have
been given in the past [1,2]. However, these algorithms
emphasize the use of a special canonic transformation,
unnecessarily making the algorithms complicated and
hard for a practicing engineer to use them. In this paper,
we give simpler versions of the disjoint algorithms,
which circumvent the need for the special network
transformation. Rather, the algorithms we construct and
give below require only a slight modification of the
standard Di-jkstra algorithm [3,4] for finding the shortest
path. This modified Dijkstra is described in Appendix A.

1. Suboptimalily

3.1 Edge-disjoint shortest pair of paths
algorithm Note that in Fig. 1 the shortest pair of edge-disjoint

paths is actually (ABCGZ, AEBFDZ) with a total length
of 10. Similarly, the shortest pair of vertex-disjoint paths

434

The algorithm for generating the shortest pair of
edge-disjoint paths between a given pair of vertices in a
graph can be conveniently given as follows [SI:

1. Run the shortest path algorithm (Appendix A) for
the given pair of vertices under consideration (vertices A
and Z). Refer to Fig. 1 as an illustration, where A is
assumed to be the source vertex and Z the destination
vertex.

G

E 3 F

Fig. 3 The modified counterpart of Fig. 1 for the
edge-disjoint shortest pair algorithm

2. Replace each edge of the shortest path by a single
arc directed towards the source vertex (vertex A in Fig.

3. Make the length of each of the above arcs
negative.

4. Run the shortest path algorithm (Appendix A)
from vertex A to vertex Z in the modified graph (Fig. 3).

5 . Replace the negative arcs in the graph with the
original edges (of positive length). Remove overlapping
edges of the two paths found above. The desired pair of
paths results.

Step 2 above ensures that the shortest path (ABCDZ
of length = 4 in Fig. 1) is not reproduced when the
shortest path algorithm is run in the modified graph (see
Fig. 3). In addition, the arcs directed towards the source
vertex permit the interlacing of the shortest path to be
found (see Step 4) with the shortest path found in the
original graph. Allowing for interlacing and the
negativity of the arcs (Step 3) lead to optimality. Step 4
when applied to Fig. 3 yields path AEBFDCGZ of length
1 + 1 + 1 + 1 - 1 + 1 +2=6 as the shortest path, implying a total
length of 4+6=10 for the edge-disjoint path pair.
However, the edge-disjoint paths themselves are
obtained by erasing the interlacing part, which is DC.
This step leads to (ABCGZ, AEBFDZ) as the shortest
pair (of length = 10) in the original graph of Fig. 1.

1 >.

3.2 Vertex-disjoint shortest pair of paths
algorithm

The algorithms for vertex-disjointness also require
two runs of the shortest path algorithm (Appendix A) in
a modified graph, but with a crucial difference which we
illustrate with reference to Figs. 1 and 4. For vertex-
disjointness, all possible paths between A and Z that
intersect with the shortest path ABCDZ must be
excluded from consideration during the search for the
second shortest path. For example, paths AEBFZ and
AEBFDCGZ in Fig. 3, while candidate paths in the
edge-disjoint algorithm, are not valid paths for vertex-
disjointness. Exclusion of such paths is achieved via
vertex-splitting along the first shortest path found.
Invocation of the standard vertex-splitting technique [6]
yields the following algorithm for the shortest pair of
vertex-disjoint paths:

1. For the given pair of vertices under consideration,
find the shortest path using the shortest path algorithm in
Appendix A. For illustration, refer to the network graph
of Fig. 1.

G

Fig. 4 The modified counterpart of Fig. 1 for the
ve rtex-d isjoi nt shortest pair algorithm

2. Replace each edge on the shortest path by an arc
directed towards the source vertex, and make its length
negative.

3. Split each vertex on the shortest path into two
colocated subvertices joined by an arc of length zero.
Direct this arc towards the source vertex. Replace
external edges connected to vertices on the shortest path
by two oppositely directed arcs of the same and original
length, and connected to the two subvertices, as shown
in Fig. 4; external arcs terminate on the primed
subvertices, while they originate from the double-primed
subvertices.

4. Run the shortest path algorithm (Appendix A) in
the modified graph of Fig. 4.

5. Remove the zero length arcs; coalesce the
subvertices into their parent vertices. Replace the single
arcs of the shortest path with their original edges (of
positive length). Remove overlapping edges of the two
paths found above to obtain the shortest pair of vertex-
disjoint paths.

435

Starting with Fig. 1, Steps 1-3 yield the graph of Fig.
4. The shortest path obtained is AEFD’C’GZ of length
1+3+1-1+1+2 = 7, which implies a total length of 4 + 7
= 11 for the shortest pair of vertex-disjoint paths. Finally,
Step 5 yields (ABCGZ, AEFDZ) as the shortest pair of
vertex disjoint paths (of length = 11) in the original
graph of Fig. 1.

Note that the operation of vertex-splitting excluded
paths AEBFZ and AEBFDCGZ from being considered,
as one desired. Since the constraint of vertex-disjointness
is more stringent than the constraint for edge-
disjointness, one expects that the length of the shortest
vertex-disjoint pair 2 length of the shortest edge-disjoint
pair; this fact is borne out in the example of Fig. 1.

It is also worthwhile to point out that in the algorithm
above, although each vertex is split into two subvertices
in accordance with the vertex-splitting rule [6] (which is
also followed in Refs. [1,2]), splitting vertices of degree
3 is in fact redundant; one only needs to split vertices of
degree 4 or more.

3.3. Shortest K-disjoint paths (K>2)

These can be obtained iteratively by using the
shortest path algorithm given in Appendix A.

3.3.1 Vertex-disjoint paths. We discuss the generation
of K (>2) vertex-disjoint paths fkom knowledge of the
(K-1) disjoint paths. Suppose in Fig. 5a the shortest pair
of vertex-disjoint paths between vertices A and Z
obtained by the algorithm of Sec. 3.2 is (ABCZ,
ADEZ). To obtain a triplet, we modify the given graph

n F

Fig. 5a (ABCZ, ADEZ) are the shortest pair of
vertex-disjoint paths.

by splitting the vertices on the given shortest pair of
paths, and connecting them to the other vertices in the
graph by the same rules as in the construction of the
shortest pair algorithm. Fig. 5b shows the modified

Fig. 5b Modified graph for obtaining the
shortest triplet of paths in Fig. 5a

graph in which the shortest path algorithm is run from A
to Z. If any interlacing takes place the common parts
should be erased, and the split vertices coalesced back
into their parent vertices. The final result is the shortest
triplet of vertex-disjoint paths. In a similar way further
iterations are performed to obtain more than three
vertex-disjoint paths of minimum total length in a given
network graph, provided such paths exist.

3.3.2 Edge-disjoint paths For K-disjoint paths the
procedure is the same, except that vertex-splitting is not
performed.

4. Survivable mesh networks

One of the major problems in today‘s network is
making a given network survivable such that the traffic
affected by a link or node failure is restored easily and
quickly in the network. Restoration requires spare
capacity allocation in the network. Spare capacity
should be so allocated that not only is the cost minimal,
but also restoration can be effected quickly so that the
time of traffic outage is reduced as much as possible. In
what follows, we assume that the networks are high-
connectivity (mesh) networks which employ digital
cross-connect systems (DCS) at nodes.

Although several algorithms exist on spare capacity
allocation, they are generally based on rerouting affected
traffic around the failed link. A shortest path algorithm
is normally used for determining alternate routes and
spare capacity assignment on each link [7] . Also in such
network systems, where the traffic is routed around the
failed link, the time to effect restoration may be
increased due to the need to determine the location of the
failed link or node in the network.

In Section 4.1, we describe an approach where the
total capacity (working capacity and spare capacity) on
each link is determined from the set of disjoint paths
available between each pair of nodes in the network. The

436

traffic demand and the needed spare capacity are split
over the disjoint paths between a given pair of nodes.
Thus, if a node or link fails along one of the disjoint
paths, the failure is detected at the endpoints of the
affected traffic, and the affected traffic is switched (or
crossconnected) to the available spare capacity on the
remaining paths in the disjoint set.

Mesh networks, being highly connected, carry the
possibility of link crossings. Fig. 6 is an example of a
network where a subset of physical links cross each
other. This crossing point may be a regenerator location,
for example. Even though three disjoint paths exist
between every pair of nodes, this is not a good network
design, since damage or failure at the central point would
result in the loss of half of the links in the network.
Clearly, such network design should be avoided. In
Section 4.2, we point out a methodology for optimal
network topologies embedded in a plane, i.e., network
configurations in a plane that permit a given number of
disjoint paths, using the minimum number of

Fig. 6 A 6-node (3-connected) network; 50% of
its link intersect at a single point.

links with no link crossing. In particular, we illustrate
the K=3 case.

4.1 Capacity allocation

Let us suppose we are concerned with the problem of
a survivable mesh network design with the requirement
of 100% restoration of affected traffic when a node or
link fails in the network. We assume that traffic demands
between each pair of nodes in the network is given.
Then the model we propose for capacity allocation
(working as well as spare) in the network is illustrated
by consideration of traffic demand between a single pair
of vertices and its working and spare capacity allocation
over the same set of disjoint paths:

a. If T denotes the traffic demand between the pair of
vertices A and Z in Fig. 7, then the traffic routed over
each of the M disjoint paths is TIM.

b. If a link or a node fails on any of the above paths,
the affected traffic (=T/M for the node pair under

consideration) is switched to the remaining M-1 paths by
digital crossconnect systems (DCS) located at the end
points A and Z. This implies a spare capacity reservation
of T/(M(M-1)) on each of the M paths.

1
2

h 7

Fig. 7 Nodes A and 2 between which traffic T
flows over M disjoint paths.

4.1.1 Fast restoration criteria for M. Greater the
number M, smaller the amount of traffic that needs to be
switched between the node pair under consideration.
Thus, if the DCS crossconnect time depends upon the
amount of traffic to be switched, it would be desirable to
have a large value of M to reduce restoration time.
Clearly, l<MIK, where K is the maximum number of
disjoint paths between A and Z in Fig. 7. The minimum
value of M is two. However, if the restoration is to take
place fast (in a time less than some threshold time T) so
that the customers do not notice the span or node failure,
the value of M may have to be greater than 2. For
example, if S , denotes the restoration time
(detection+signaling+crossconnect time) for an amount
of traffic T/n, n (integer) >2 and S , satisfies the
inequality: S , <z< Sn-,, then min(M), or the minimum
number of desired disjoint paths =n; equivalently, M a .

4.1.2 Cost constraint criteria for M. Given M set by
the fast restoration criterion described above, can its
value be further improved from cost considerations? For
illustration, we shall assume that the measure of cost is
the total capacity (working+spare) assigned to the path
times the physical length of the path. Capacity
determines the number of fibers needed along the path,
and the length of the path is equal to the length of the
fiber laid along the path. Referring to Fig. 7 and the
discussion earlier, the total capacity needed on each path
for 100% restoration is

C,, = T/M + T/(M(M-1)) = T/(M-l) (1)

The total traffic-miles, T,,(M), for the traffic between the
given pair of nodes in Fig. 7 is given by

M M
I..

Ttot(M) = C,, XIi = T/(M-1) X l i ,
i=l i= l

where li denotes the length of path i. Now let us suppose
M+p paths (p2l) also exist. Then Eq. (2) implies

437

M+p M

Ttot(M+P)~Ttot(M) = (M- 1 Y(M+P- 1) c 1' , / c 1, > (3)
1=1 ,=1

where 1,' denotes the length of path i within the group of
M+p disjoint paths. Eq. (3) leads to

if

M+p M cl', /El1 I (M+p-l)/(M-1) (5)

Thus, if Eq. (5) is satisfied, it would be cost-effective
to route the traffic over (M+p) disjoint paths instead of
M disjoint paths. For example, if the ratio of the triplet
pathlength to the doublet pathlength (case of M=2, p=l),
is less than 2, it would be preferable to route the traffic
over the triplet. Similarly, if, for M=2 and p=2, the left
hand side of Eq. 5 is less than 3, the quartet is preferable
to the doublet. In general, assigning capacity over
M+p paths, instead of M paths, offers the following
advantages:

1. More traffic can be sent between the same pair of
nodes within the bound permitted by the fast restoration
criterion; alternatively, for a given amount of traffic, less
traffic needs to be switched when a link or node on the
path fails.

2.
offer greater potential than paths in the M set for sharing
spare capacity with the paths corresponding to other
pairs of nodes.

When the above process is repeated for every pair of
nodes in the network, the working capacity on each

Being greater in number, paths in the M+p set

Td3

A2 22

Fig. 8 Spare capacity sharing on common link
PQ

individual link is obtained by summing up the working
capacities corresponding to different node pairs to which
the link is common (see Fig. 8). Also spare capacity
allocation on each individual link involves sharing, as

depicted in Fig. 8. For example, while the total working
capacity on link PQ is TJ3 +T2/2, the spare capacity is
max(T /6, T2/2).

4.2 Network topologies for disjoint paths

Here we ask the question: given N nodes from which
to construct a network, what should be the minimal
topology for a K-connected network? A network that
permits K-disjoint paths between every pair of nodes is
called K-connected. By minimal topology is meant a
topology involving the least number of links and no
crossing of links. We impose the condition of no link
crossing because most practical networks, being
terrestrial, essentially lie in a plane, and link intersection
points imply added vulnerability which should be
eliminated to increase the survivability of networks (see
Fig. 6). In essence, we look for planar K-connected
graphs with minimum number of links.

K-connectedness implies that every node is at least
K-valent, i.e., of degree K. The converse that K-valency
implies K-connectedness is not necessarily true (see Fig.
9). Notwithstanding, to construct a K-connected network

6

Fig. 9 A trivalent graph that is not 3-connected

with the minimum number of links, we impose the
condition that each node of the graph is of degree K.
Each node being K-valent leads to the minimum number
of links

assuming the product NK is even; the factor of 1/2 is due
to the fact that each link being common to a pair of
nodes contributes two to the degree sum of the nodes; if
both N and K are odd,

Emin= (NK+1)/2. (6b)

Furthermore, since the total number of links in a graph
of N nodes cannot exceed N(N-1)/2 (no multiple edges
assumed as before), we obtain the inequality

N>K+ 1 (7)

438

for a K-connected network.
We now invoke the Euler Theorem [4], which states

that the following equation must be satisfied by a planar
graph:

where E, N, and F are the number of links, nodes, and
faces, respectively in the graph. Faces are regions, shown
numbered in the example of Fig. 9. Face 6 is deemed an
infinite region, and is counted in Eq. (8). Now if the
planar K-connected graphs are to possess the minimum
number of links given by Eqs. (6a-b), then Eq. (8)
becomes

F = (K - 2) N/2 + 2, (9 4

F = (K - 2) N/2 + 512 (N and K each odd) (9b)

In what follows, we discuss the optimal network
topologies for K=2 and 3.
1. K=2. From Eq. (9a), we see that F=2; the
corresponding network topology is a ring passing
through each node of the network. Between every pair
of nodes two disjoint paths exist. The number of links is
N (Eq. 6a), where N is the number of nodes. The
minimum number of nodes allowed on the ring (from
Eq. 7) = K+l =3 (the case of 2 nodes on a ring (N=2)
corresponds to a 2-node graph with multiple edges, and
is correctly disallowed by our equations).
2. K=3 The minimum number of nodes for 3-
connectedness=3+1=4 from Eq. (7), and for this
minimum the minimum number of links is 3 x 4/2=6
from Eq. (6a). Also F=N/2+2=4. These conditions for
N=4 are satisfied by the 4-node network in Fig. 10.
There are three disjoint paths for every pair of nodes. As
we shall see below, it is the building block for
configurations for higher N; we denote it by 4' hereafter.
We first assume that N is even. Then E,, = 3N/2, and
F=N/2+2. From these expressions, we see that for every
increment of 2 in N

i. the number of faces increases by 1 .

ii. the number of links increases by 3.

These requirements can only be satisfied if the two new
nodes are placed on two different links of the given
graph, and joined by a new (nonintersecting) link. This
operation of introducing two new nodes and a
connecting link we call 'link insertion' (there are only
two distinct ways of performing 'link insertion' in the 4'
network of Fig. 10,

1U

Fig. 10 Single ring topologies (denoted by N')
for 3-connected planar graphs.

and these lead to the 6-node networks of Fig. 10 and Fig.
11). Clearly, a trivalent graph remains trivalent after
'link insertion'. In fact, a trivalent 3-connected graph of
N nodes transforms into a trivalent 3-connected graph of
N+2 nodes upon 'link insertion'. This result follows from
consideration of (3-dimensional) polytope graphs [SI.
Thus, starting with 4', which is the smallest trivalent 3-
connected planar graph, optimal planar network
topologies for N=6,8,--- can be generated by the repeated
operation of 'link insertion'. We start by pointing out two
types of network topologies, which we consider to be
basic:

i. Single Ring

ii. Double Ring

Single Ring Network Topology: Arrange the given N
nodes into a trivalent tree (each node of degree 3 or l),
and pass a ring through the univalent nodes. We
illustrate the topology generation for N=4,6, and 10 in
Fig. 10. We denote the generated topologies by N',
where N is the number of nodes in the network.

Double Ring Topology: This topology consists of two
concentric rings, each containing N/2 nodes. Each node
belonging to the external ring is connected to a

6" 8"

Fig. 11 Basic double ring topology (denoted by
N") for N=6 and N=8

corresponding one on the internal ring. This topology
leads to a series, starting with N=6, and is illustrated in

439

Fig. 11. It may be deemed the equivalent of
superposition of an N"' network on a null ring (ring with
no nodes). See Fig. 12.

8"- Network Null ring 8'-topology

X U
Fig. 12 The NI'-topology as superposition of N"'
network (with N nodes) and the null ring (with
no nodes).

Hybrid Concentric Ring Topology

This 3-connected network topology is obtained by
superposing the two fundamental topologies described
above. For example, a network topology for a N=10
network may be obtained by applying the 6"'-topology
on the 4'-topology, as illustrated in Fig. 13. Fig. 13 also

Fig. 13 Example of hybrid concentric ring
topologies for N = I O , 12, and 14.

shows the cases: 6"'x6", 6"'x8", and 8"'x6" corresponding
to N=12, 14, and 14 nodes, respectively. In general,
given N, several network topologies may be permitted.
For example, consider N/6= p + remainder, where p is an
integer, and remainder = 2 or 4. If the remainder is 4, the
network topology may be considered a product of p 6"'-
topologies and one 4'-topology (6"'x6"'x x6"'(p times)

x4'). Similarly, if the remainder is 2, the 2 may be
combined with one of the 6"',s to form an 8", resulting,
for example, in the superposition of p-1 6"'-topologies
and one S"-topology. The order of 8 in the series is
important, since each different ordering yields a
different network topology for the N-node network (see
the N=14 cases in Fig. 13). As a final example, we
consider the case of N=20 network, and enumerate the
various network topologies possible: 6111x61''x8",

lO"'xlO', 8"'x12", 12"'x8", lO"'x10", 14"'x6", 14"'x6',
6"'x14", 16"'x4', 20", etc. Note that the primed (Fig. 10
type) and the double-primed (Fig. 11 type) always occur
on the extreme right. We close the discussion above
with the comment that more network topologies are
permissible than have been considered so far. For
example, basic series generation in Fig. 12 can be
generalized to a superposition of N"' and a ring
containing q chords (q20) (see Fig. 14); for q>O, we

6111x6111x~l, 6111x8111x611, 8111x6111x611, ~lllx6111x61, 8111x8tltx41,

Fig. 14 Ring with two chords

denote the ensuing network topology by N I q , . Classifying
it as a basic topology, it may be combined with the
previously considered basic topologies to obtain more
hybrid topologies.

Fig. 15 N" = 9 topology

Hitherto, the discussion has been confined to N even.
When N is odd, it implies that the graph has one more
node and two more links than the graph for N- 1 (even)
nodes (see Eqs. (6a-b)). The transformation to the N odd
case from the N- 1 even case can be made by inserting a
node on one of the links of the N-1 (even) topology, and
connecting that node to an existing node chosen such

440

that the drawn link does not intersect with any existing
link. The degree of the existing node changes to 4. See
Fig. 15 for an illustration of one of the ways of
obtaining N=9 topology from an existing N=8 topology.

5. Summary

We have presented algorithms for finding the shortest
set of K-disjoint paths between a given pair of vertices in
a network-graph. These algorithms are easily
implementable for use in the design of survivable
networks. In this paper, we have considered a model
which allows for the division of traffic between a given
pair of nodes in the network over more than two disjoint
paths such that by suitable capacity allocation on the
links the network becomes restorable 100%. We have
shown that sending traffic over more than two disjoint
paths can become economical and efficient in digital-
crossconnect (DCS)-based networks. This approach of
sending traffic over more than two paths in the design of
survivable networks appears not to have been considered
before. In addition, in this paper we have considered a
methodology for generating network topologies that
permit K>2 disjoint paths, and have illustrated it for the
K=3 case. Knowledge of such topologies permits a
network designer to design the links (or facility layout)
for a survivable (K-connected) network, starting from
the location of nodes.

References
1. J. W. Suurballe, "Disjoint Paths in a Network", Networks, 4

2. J.W. Suurballe and R.E. Tarjan, It A Quick Method for
Finding Shortest Pairs of Disjoint Paths", Networks, 14 (1984)

3. E.W. Dijkstra, "A Note on Two Problems in Connexion with
Graphs", Numer. Math. 1 (1959) 269-271.
4. M. Gondran and M. Minoux, Graphs and Algorithms, John
Wiley (1984).
5 . Proofs of the algorithms are not been given here due to
brevity constraints.
6. L.R. Ford and D.R. Fulkerson, Flows in Networkr,
Princeton, University Press (1962).
7. T. Wu, Fiber Network Service Survivability, Artech House
(1992).
8. B. Grunbaum, Convex Polytopes, Interscience Publishers
(1967)

(1974) 125-145.

325-336.

APPENDIX A

Modified Dijkstra Algorithm for Shortest Path from
A to Z

The algorithm given below is a slight variant of the
original Dijkstra algorithm [3,4]. It is different (in Step 3
below) in that it scans all the neighbors of the vertex
selected (or "permanently" labeled) in Step 2.

Let d(i) denote the distance of vertex i from starting
vertex A. Let P(i) denote its predecessor.

1. Start with
d(A)=O, d(i)=l(A,i), if i E r A ,

= 00, otherwise.
(ri I set of first neighbor vertices of vertex i,
l(ij) = length of arc from vertex i to vertex j)

P(i)=A V i E TA.
Set S = r A

2. Findj E such that d(j)=min d(i), i E S .
Set S=S -U>
If j = Z (the terminal vertex), END;
otherwise, go to 3.

3. V i E rj, if d(j)+l(j,i) < d(i), set
d(i)=d(i)+l(j,i), P(i)=j and S = S U {i};
go to 2.

After initialized in step 1, the algorithm alternates
between Steps 2 and 3. In each iteration, a vertex with
least pathlength is selected from the set: S . The
algorithm searches by making one move at a time, and
terminates when the vertex selected from the set S is Z.

In the original Dijkstra algorithm, when a vertex with
the least path length is selected from the list of
tentatively labeled vertices, the selected vertex is said to
have been labeled "permanently", i.e, the shortest path
length to that selected vertex from the given origin (the
source vertex A) has been found. No further scanning
from any other vertex in the graph can update the label
of this vertex. In our application, because of the
presence of negative arcs in the modified graph (see
Step 3 of Section 3. l), rescanning can update the label of
the previously selected (or "permanently" labeled)
vertex. The algorithm given above permits such
rescanning.

44 1

