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Abstract 

One way to improve the reliability of a network is 
through physical diversity, i.e., via routing of trafic 
between a given pair of nodes in the network over two or 
more physically-disjoint paths such that if a node or a 
physical link fails on one of the disjoint paths, not all of 
the trafic is lost. Alternatively, enough spare capacity 
may be allocated on the individual paths such that the 
lost traflc due to a node or physical link failure can be 
routed immediately over the predetermined paths. In this 
paper, we present optimal algorithms for K-disjoint 
paths (K22) in a graph of vertices (or nodes) and edges 
(or links). These algorithms are simpler than those given 
in the past. We discuss how such algorithms can be used 
in the design of survivable mesh networks based on the 
digital crossconnect systems {DCS). We also discuss the 
generation of optimal network topologies which permit 
K>2 disjoint paths and upon which survivable networks 
may be modeled. 

1. Introduction 

As fiber is increasingly deployed in networks, 
reliability of a network is being called into question 
more than ever before. This is due to the fact that as 
more traffic is transported over the high bandwidth fiber 
network, any span (physical link) cut or node failure 
results in the loss of a large volume of traffic. One way 
to increase the reliability of a given network is through 
physical-diversity, i.e., via routing of traffic between a 
given pair of nodes in the network over two or more 
physically-disjoint paths such that if a node or a physical 
link (span) fails on one of the disjoint paths, not all of 
the traffic is lost. Alternatively, enough spare capacity 
may be allocated on the individual paths such that the 
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lost traffic due to a node or physical link failure can be 
rerouted over the predetermined disjoint paths. 

Since most networks are bidirectional, we will 
represent networks (or graphs) by vertices (or nodes) 
and edges (or links). Unless otherwise stated, we will 
assume that multiple edges (two or more links between 
the same pair of nodes) are absent. Fig. 1 is an example 
of a bidirectional network of 8 nodes and 13 edges; each 
edge is the equivalent of two oppositely directed 
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Fig. 1 
are the edge lengths. 

A bidirectional network; the numbers 

arcs, each of length equal to the edge length; length here 
has the general meaning in that it may represent the 
physical length of the edge (or link) in the network, or 
may be the cost of using the edge in transmission of data, 
and so on. A path or route between a pair of vertices is a 
sequence of arcs connecting them. When searching for 
diverse routes between a given pair of vertices, it is 
generally desirable to find the set of paths whose sum is 
a minimum. For example, if the length of an edge is the 
length of fiber over that physical link, then the optimal 
set of paths uses minimal amount of fiber between the 
pair of nodes. Similarly, if the length of a link in a graph 
represents cost of provisioning services along that link, 
then the optimal set of paths represents diverse routes 
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over which the cost of diverse provisioning of services 
would be a minimum. 

The paper is divided into 5 sections. Section 2 
reviews the simple (but erroneous) approach of finding 
physically-disjoint paths and the pitfalls involved in 
using this approach. Section 3 gives the correct 
algorithms for shortest (K22) edge-/vertex-disjoint paths. 
These algorithms are novel and simpler than those given 
in the past [1,2]; furthermore they are easily 
implementable. Section 4 focuses on the utility of 
disjoint paths in the design of survivable networks. In 
particular it is shown that transporting traffic over more 
than two disjoint paths can sometimes be more 
economical and efficient than using a disjoint pair of 
paths. To the author’s knowledge the network design 
approach given here, which involves the use of more 
than two disjoint paths, has not been considered before. 
In addition, given the number of nodes in a network, we 
discuss how optimal terrestrial networks permitting K>2 
disjoint paths may be constructed. 

is (ABCGZ, AEFDZ) with a total length equal to 11. In 
effect, the simple approach algorithms when applied to 
Fig. 1 fail to provide the optimal pairs of disjoint paths 
between A and Z. In general, such types of algorithms 
may or may not provide an optimal set of disjoint paths. 

2. False alarms about nonexistence of paths when such 
paths actually exist. 

This shortcoming is illustrated via Fig. 2. Assuming 
ABCZ is the shortest path between the given pair of 
vertices A and Z, the simple approach algorithm fails to 
find a vertex-disjoint pair, even though two such pairs 
(ABFZ, ADCZ) and (ABFZ, ADCEZ) exist. Clearly, any 
practical implementation of the simple 
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2. Simple approach disjoint paths 
algorithms and shortcomings 

The simple approach algorithms consist of finding 
first the shortest path between the pair of vertices under 
consideration, and the second shortest path which is 
disjoint from the first, the third shortest path which is 
disjoint from the previous two, and so on, depending 
upon the number of disjoint paths required. Focusing on 
a pair of disjoint paths, if link-disjointness is desired, all 
the links of the first shortest path are removed from the 
graph, and the shortest path algorithm rerun in this 
reduced graph. Likewise, if the second path is to be 
vertex-disjoint, then all the links incident on the vertices 
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Fig. 2 The simple approach algorithm fails to 
produce a vertex-disjoint pair of paths between 
A and 2. 

approach algorithm carries with it the risk of generating 
false alarms about the nonexistence of disjoint paths 
when such paths actually exist. In other words, 
automating such an algorithm for diverse provisioning 
of services in real time should be avoided, since a 
customer desiring diverse paths may be erroneously 
informed that such a service cannot be provided to him. 

(except the endpoint vertices) of the first shortest path 
are removed. These algorithms are illustrated with 

3. Shortest K (22) disjoint paths algorithms 

reference to Fig. 1. Let us suppose a pair of disjoint paths 
is desired between vertices A and Z .  Then the shortest 
path between A and Z is ABCDZ of length 4. The 
second shortest path edge-disjoint from the first is 
AEBFZ of length 7, implying a total length of 11 for the 
pair of edge-disjoint paths. Similarly, the shortest path 
vertex-disjoint from path ABCDZ in Fig. 1 is AEFZ=8, 
implying a total length of 12 for the pair of vertex- 
disjoint paths. The above simple approach of finding 
disjoint paths, however, has the following shortcomings: 

Algorithms for shortest K(22) disjoint paths have 
been given in the past [ 1,2]. However, these algorithms 
emphasize the use of a special canonic transformation, 
unnecessarily making the algorithms complicated and 
hard for a practicing engineer to use them. In this paper, 
we give simpler versions of the disjoint algorithms, 
which circumvent the need for the special network 
transformation. Rather, the algorithms we construct and 
give below require only a slight modification of the 
standard Di-jkstra algorithm [3,4] for finding the shortest 
path. This modified Dijkstra is described in Appendix A. 

1. Suboptimalily 

3.1 Edge-disjoint shortest pair of paths 
algorithm Note that in Fig. 1 the shortest pair of edge-disjoint 

paths is actually (ABCGZ, AEBFDZ) with a total length 
of 10. Similarly, the shortest pair of vertex-disjoint paths 
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The algorithm for generating the shortest pair of 
edge-disjoint paths between a given pair of vertices in a 
graph can be conveniently given as follows [SI: 

1. Run the shortest path algorithm (Appendix A) for 
the given pair of vertices under consideration (vertices A 
and Z). Refer to Fig. 1 as an illustration, where A is 
assumed to be the source vertex and Z the destination 
vertex. 

G 
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Fig. 3 The modified counterpart of Fig. 1 for the 
edge-disjoint shortest pair algorithm 

2. Replace each edge of the shortest path by a single 
arc directed towards the source vertex (vertex A in Fig. 

3. Make the length of each of the above arcs 
negative. 

4. Run the shortest path algorithm (Appendix A) 
from vertex A to vertex Z in the modified graph (Fig. 3). 

5 .  Replace the negative arcs in the graph with the 
original edges (of positive length). Remove overlapping 
edges of the two paths found above. The desired pair of 
paths results. 

Step 2 above ensures that the shortest path (ABCDZ 
of length = 4 in Fig. 1) is not reproduced when the 
shortest path algorithm is run in the modified graph (see 
Fig. 3). In addition, the arcs directed towards the source 
vertex permit the interlacing of the shortest path to be 
found (see Step 4) with the shortest path found in the 
original graph. Allowing for interlacing and the 
negativity of the arcs (Step 3 )  lead to optimality. Step 4 
when applied to Fig. 3 yields path AEBFDCGZ of length 
1 + 1 + 1 + 1 - 1 + 1 +2=6 as the shortest path, implying a total 
length of 4+6=10 for the edge-disjoint path pair. 
However, the edge-disjoint paths themselves are 
obtained by erasing the interlacing part, which is DC. 
This step leads to (ABCGZ, AEBFDZ) as the shortest 
pair (of length = 10) in the original graph of Fig. 1. 

1 >. 

3.2 Vertex-disjoint shortest pair of paths 
algorithm 

The algorithms for vertex-disjointness also require 
two runs of the shortest path algorithm (Appendix A) in 
a modified graph, but with a crucial difference which we 
illustrate with reference to Figs. 1 and 4. For vertex- 
disjointness, all possible paths between A and Z that 
intersect with the shortest path ABCDZ must be 
excluded from consideration during the search for the 
second shortest path. For example, paths AEBFZ and 
AEBFDCGZ in Fig. 3, while candidate paths in the 
edge-disjoint algorithm, are not valid paths for vertex- 
disjointness. Exclusion of such paths is achieved via 
vertex-splitting along the first shortest path found. 
Invocation of the standard vertex-splitting technique [6] 
yields the following algorithm for the shortest pair of 
vertex-disjoint paths: 

1. For the given pair of vertices under consideration, 
find the shortest path using the shortest path algorithm in 
Appendix A. For illustration, refer to the network graph 
of Fig. 1. 

G 

Fig. 4 The modified counterpart of Fig. 1 for the 
ve rtex-d isjoi nt shortest pair algorithm 

2. Replace each edge on the shortest path by an arc 
directed towards the source vertex, and make its length 
negative. 

3. Split each vertex on the shortest path into two 
colocated subvertices joined by an arc of length zero. 
Direct this arc towards the source vertex. Replace 
external edges connected to vertices on the shortest path 
by two oppositely directed arcs of the same and original 
length, and connected to the two subvertices, as shown 
in Fig. 4; external arcs terminate on the primed 
subvertices, while they originate from the double-primed 
subvertices. 

4. Run the shortest path algorithm (Appendix A) in 
the modified graph of Fig. 4. 

5.  Remove the zero length arcs; coalesce the 
subvertices into their parent vertices. Replace the single 
arcs of the shortest path with their original edges (of 
positive length). Remove overlapping edges of the two 
paths found above to obtain the shortest pair of vertex- 
disjoint paths. 

435 



Starting with Fig. 1, Steps 1-3 yield the graph of Fig. 
4. The shortest path obtained is AEFD’C’GZ of length 
1+3+1-1+1+2 = 7, which implies a total length of 4 + 7 
= 11 for the shortest pair of vertex-disjoint paths. Finally, 
Step 5 yields (ABCGZ, AEFDZ) as the shortest pair of 
vertex disjoint paths (of length = 11) in the original 
graph of Fig. 1. 

Note that the operation of vertex-splitting excluded 
paths AEBFZ and AEBFDCGZ from being considered, 
as one desired. Since the constraint of vertex-disjointness 
is more stringent than the constraint for edge- 
disjointness, one expects that the length of the shortest 
vertex-disjoint pair 2 length of the shortest edge-disjoint 
pair; this fact is borne out in the example of Fig. 1. 

It is also worthwhile to point out that in the algorithm 
above, although each vertex is split into two subvertices 
in accordance with the vertex-splitting rule [6 ]  (which is 
also followed in Refs. [1,2]), splitting vertices of degree 
3 is in fact redundant; one only needs to split vertices of 
degree 4 or more. 

3.3. Shortest K-disjoint paths (K>2) 

These can be obtained iteratively by using the 
shortest path algorithm given in Appendix A. 

3.3.1 Vertex-disjoint paths. We discuss the generation 
of K (>2) vertex-disjoint paths fkom knowledge of the 
(K-1) disjoint paths. Suppose in Fig. 5a the shortest pair 
of vertex-disjoint paths between vertices A and Z 
obtained by the algorithm of Sec. 3.2 is (ABCZ, 
ADEZ). To obtain a triplet, we modify the given graph 

n F  

Fig. 5a (ABCZ, ADEZ) are the shortest pair of 
vertex-disjoint paths. 

by splitting the vertices on the given shortest pair of 
paths, and connecting them to the other vertices in the 
graph by the same rules as in the construction of the 
shortest pair algorithm. Fig. 5b shows the modified 

Fig. 5b Modified graph for obtaining the 
shortest triplet of paths in Fig. 5a 

graph in which the shortest path algorithm is run from A 
to Z. If any interlacing takes place the common parts 
should be erased, and the split vertices coalesced back 
into their parent vertices. The final result is the shortest 
triplet of vertex-disjoint paths. In a similar way further 
iterations are performed to obtain more than three 
vertex-disjoint paths of minimum total length in a given 
network graph, provided such paths exist. 

3.3.2 Edge-disjoint paths For K-disjoint paths the 
procedure is the same, except that vertex-splitting is not 
performed. 

4. Survivable mesh networks 

One of the major problems in today‘s network is 
making a given network survivable such that the traffic 
affected by a link or node failure is restored easily and 
quickly in the network. Restoration requires spare 
capacity allocation in the network. Spare capacity 
should be so allocated that not only is the cost minimal, 
but also restoration can be effected quickly so that the 
time of traffic outage is reduced as much as possible. In 
what follows, we assume that the networks are high- 
connectivity (mesh) networks which employ digital 
cross-connect systems (DCS) at nodes. 

Although several algorithms exist on spare capacity 
allocation, they are generally based on rerouting affected 
traffic around the failed link. A shortest path algorithm 
is normally used for determining alternate routes and 
spare capacity assignment on each link [7] .  Also in such 
network systems, where the traffic is routed around the 
failed link, the time to effect restoration may be 
increased due to the need to determine the location of the 
failed link or node in the network. 

In Section 4.1, we describe an approach where the 
total capacity (working capacity and spare capacity) on 
each link is determined from the set of disjoint paths 
available between each pair of nodes in the network. The 
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traffic demand and the needed spare capacity are split 
over the disjoint paths between a given pair of nodes. 
Thus, if a node or link fails along one of the disjoint 
paths, the failure is detected at the endpoints of the 
affected traffic, and the affected traffic is switched (or 
crossconnected) to the available spare capacity on the 
remaining paths in the disjoint set. 

Mesh networks, being highly connected, carry the 
possibility of link crossings. Fig. 6 is an example of a 
network where a subset of physical links cross each 
other. This crossing point may be a regenerator location, 
for example. Even though three disjoint paths exist 
between every pair of nodes, this is not a good network 
design, since damage or failure at the central point would 
result in the loss of half of the links in the network. 
Clearly, such network design should be avoided. In 
Section 4.2, we point out a methodology for optimal 
network topologies embedded in a plane, i.e., network 
configurations in a plane that permit a given number of 
disjoint paths, using the minimum number of 

Fig. 6 A 6-node (3-connected) network; 50% of 
its link intersect at a single point. 

links with no link crossing. In particular, we illustrate 
the K=3 case. 

4.1 Capacity allocation 

Let us suppose we are concerned with the problem of 
a survivable mesh network design with the requirement 
of 100% restoration of affected traffic when a node or 
link fails in the network. We assume that traffic demands 
between each pair of nodes in the network is given. 
Then the model we propose for capacity allocation 
(working as well as spare) in the network is illustrated 
by consideration of traffic demand between a single pair 
of vertices and its working and spare capacity allocation 
over the same set of disjoint paths: 

a. If T denotes the traffic demand between the pair of 
vertices A and Z in Fig. 7, then the traffic routed over 
each of the M disjoint paths is TIM. 

b. If a link or a node fails on any of the above paths, 
the affected traffic (=T/M for the node pair under 

consideration) is switched to the remaining M-1 paths by 
digital crossconnect systems (DCS) located at the end 
points A and Z. This implies a spare capacity reservation 
of T/(M(M-1)) on each of the M paths. 

1 
2 

h 7 

Fig. 7 Nodes A and 2 between which traffic T 
flows over M disjoint paths. 

4.1.1 Fast restoration criteria for M. Greater the 
number M, smaller the amount of traffic that needs to be 
switched between the node pair under consideration. 
Thus, if the DCS crossconnect time depends upon the 
amount of traffic to be switched, it would be desirable to 
have a large value of M to reduce restoration time. 
Clearly, l<MIK, where K is the maximum number of 
disjoint paths between A and Z in Fig. 7. The minimum 
value of M is two. However, if the restoration is to take 
place fast (in a time less than some threshold time T) so 
that the customers do not notice the span or node failure, 
the value of M may have to be greater than 2. For 
example, if S ,  denotes the restoration time 
(detection+signaling+crossconnect time) for an amount 
of traffic T/n, n (integer) >2 and S ,  satisfies the 
inequality: S ,  <z< Sn-,, then min(M), or the minimum 
number of desired disjoint paths =n; equivalently, M a .  

4.1.2 Cost constraint criteria for M. Given M set by 
the fast restoration criterion described above, can its 
value be further improved from cost considerations? For 
illustration, we shall assume that the measure of cost is 
the total capacity (working+spare) assigned to the path 
times the physical length of the path. Capacity 
determines the number of fibers needed along the path, 
and the length of the path is equal to the length of the 
fiber laid along the path. Referring to Fig. 7 and the 
discussion earlier, the total capacity needed on each path 
for 100% restoration is 

C,, = T/M + T/(M(M-1)) = T/(M-l) (1) 

The total traffic-miles, T,,(M), for the traffic between the 
given pair of nodes in Fig. 7 is given by 

M M 
I.. 

Ttot(M) = C,, XIi = T/(M-1) X l i  , 
i=l i= l  

where li denotes the length of path i. Now let us suppose 
M+p paths (p2l) also exist. Then Eq. (2) implies 
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M+p M 

Ttot(M+P)~Ttot(M) = (M- 1 Y(M+P- 1) c 1' , / c 1, > (3) 
1=1 ,=1 

where 1,' denotes the length of path i within the group of 
M+p disjoint paths. Eq. (3) leads to 

if 

M+p M cl', /El1 I (M+p-l)/(M-1) ( 5 )  

Thus, if Eq. ( 5 )  is satisfied, it would be cost-effective 
to route the traffic over (M+p) disjoint paths instead of 
M disjoint paths. For example, if the ratio of the triplet 
pathlength to the doublet pathlength (case of M=2, p=l), 
is less than 2, it would be preferable to route the traffic 
over the triplet. Similarly, if, for M=2 and p=2, the left 
hand side of Eq. 5 is less than 3, the quartet is preferable 
to the doublet. In general, assigning capacity over 
M+p paths, instead of M paths, offers the following 
advantages: 

1. More traffic can be sent between the same pair of 
nodes within the bound permitted by the fast restoration 
criterion; alternatively, for a given amount of traffic, less 
traffic needs to be switched when a link or node on the 
path fails. 

2. 
offer greater potential than paths in the M set for sharing 
spare capacity with the paths corresponding to other 
pairs of nodes. 

When the above process is repeated for every pair of 
nodes in the network, the working capacity on each 

Being greater in number, paths in the M+p set 

Td3 

A2 22 

Fig. 8 Spare capacity sharing on common link 
PQ 

individual link is obtained by summing up the working 
capacities corresponding to different node pairs to which 
the link is common (see Fig. 8). Also spare capacity 
allocation on each individual link involves sharing, as 

depicted in Fig. 8. For example, while the total working 
capacity on link PQ is TJ3 +T2/2, the spare capacity is 
max( T /6, T2/2). 

4.2 Network topologies for disjoint paths 

Here we ask the question: given N nodes from which 
to construct a network, what should be the minimal 
topology for a K-connected network? A network that 
permits K-disjoint paths between every pair of nodes is 
called K-connected. By minimal topology is meant a 
topology involving the least number of links and no 
crossing of links. We impose the condition of no link 
crossing because most practical networks, being 
terrestrial, essentially lie in a plane, and link intersection 
points imply added vulnerability which should be 
eliminated to increase the survivability of networks (see 
Fig. 6). In essence, we look for planar K-connected 
graphs with minimum number of links. 

K-connectedness implies that every node is at least 
K-valent, i.e., of degree K. The converse that K-valency 
implies K-connectedness is not necessarily true (see Fig. 
9). Notwithstanding, to construct a K-connected network 

6 

Fig. 9 A trivalent graph that is not 3-connected 

with the minimum number of links, we impose the 
condition that each node of the graph is of degree K. 
Each node being K-valent leads to the minimum number 
of links 

assuming the product NK is even; the factor of 1/2 is due 
to the fact that each link being common to a pair of 
nodes contributes two to the degree sum of the nodes; if 
both N and K are odd, 

Emin= (NK+1)/2. (6b) 

Furthermore, since the total number of links in a graph 
of N nodes cannot exceed N(N-1)/2 (no multiple edges 
assumed as before), we obtain the inequality 

N>K+ 1 (7) 
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for a K-connected network. 
We now invoke the Euler Theorem [4], which states 

that the following equation must be satisfied by a planar 
graph: 

where E, N, and F are the number of links, nodes, and 
faces, respectively in the graph. Faces are regions, shown 
numbered in the example of Fig. 9. Face 6 is deemed an 
infinite region, and is counted in Eq. (8). Now if the 
planar K-connected graphs are to possess the minimum 
number of links given by Eqs. (6a-b), then Eq. (8) 
becomes 

F = (K - 2) N/2 + 2, ( 9 4  

F = (K - 2) N/2 + 512 (N and K each odd) (9b) 

In what follows, we discuss the optimal network 
topologies for K=2 and 3. 
1. K=2. From Eq. (9a), we see that F=2; the 
corresponding network topology is a ring passing 
through each node of the network. Between every pair 
of nodes two disjoint paths exist. The number of links is 
N (Eq. 6a), where N is the number of nodes. The 
minimum number of nodes allowed on the ring (from 
Eq. 7) = K+l =3 (the case of 2 nodes on a ring (N=2) 
corresponds to a 2-node graph with multiple edges, and 
is correctly disallowed by our equations). 
2. K=3 The minimum number of nodes for 3- 
connectedness=3+1=4 from Eq. (7), and for this 
minimum the minimum number of links is 3 x 4/2=6 
from Eq. (6a). Also F=N/2+2=4. These conditions for 
N=4 are satisfied by the 4-node network in Fig. 10. 
There are three disjoint paths for every pair of nodes. As 
we shall see below, it is the building block for 
configurations for higher N; we denote it by 4' hereafter. 
We first assume that N is even. Then E,, = 3N/2, and 
F=N/2+2. From these expressions, we see that for every 
increment of 2 in N 

i. the number of faces increases by 1 .  

ii. the number of links increases by 3. 

These requirements can only be satisfied if the two new 
nodes are placed on two different links of the given 
graph, and joined by a new (nonintersecting) link. This 
operation of introducing two new nodes and a 
connecting link we call 'link insertion' (there are only 
two distinct ways of performing 'link insertion' in the 4' 
network of Fig. 10, 

1U 

Fig. 10 Single ring topologies (denoted by N') 
for 3-connected planar graphs. 

and these lead to the 6-node networks of Fig. 10 and Fig. 
11). Clearly, a trivalent graph remains trivalent after 
'link insertion'. In fact, a trivalent 3-connected graph of 
N nodes transforms into a trivalent 3-connected graph of 
N+2 nodes upon 'link insertion'. This result follows from 
consideration of (3-dimensional) polytope graphs [SI. 
Thus, starting with 4', which is the smallest trivalent 3- 
connected planar graph, optimal planar network 
topologies for N=6,8,--- can be generated by the repeated 
operation of 'link insertion'. We start by pointing out two 
types of network topologies, which we consider to be 
basic: 

i. Single Ring 

ii. Double Ring 

Single Ring Network Topology: Arrange the given N 
nodes into a trivalent tree (each node of degree 3 or l), 
and pass a ring through the univalent nodes. We 
illustrate the topology generation for N=4,6, and 10 in 
Fig. 10. We denote the generated topologies by N', 
where N is the number of nodes in the network. 

Double Ring Topology: This topology consists of two 
concentric rings, each containing N/2 nodes. Each node 
belonging to the external ring is connected to a 

6" 8" 

Fig. 11 Basic double ring topology (denoted by 
N") for N=6 and N=8 

corresponding one on the internal ring. This topology 
leads to a series, starting with N=6, and is illustrated in 
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Fig. 11. It may be deemed the equivalent of 
superposition of an N"' network on a null ring (ring with 
no nodes). See Fig. 12. 

8"- Network Null ring 8'-topology 

X U 
Fig. 12 The NI'-topology as superposition of N"' 
network (with N nodes) and the null ring (with 
no nodes). 

Hybrid Concentric Ring Topology 

This 3-connected network topology is obtained by 
superposing the two fundamental topologies described 
above. For example, a network topology for a N=10 
network may be obtained by applying the 6"'-topology 
on the 4'-topology, as illustrated in Fig. 13. Fig. 13 also 

Fig. 13 Example of hybrid concentric ring 
topologies for N = I O ,  12, and 14. 

shows the cases: 6"'x6", 6"'x8", and 8"'x6" corresponding 
to N=12, 14, and 14 nodes, respectively. In general, 
given N, several network topologies may be permitted. 
For example, consider N/6= p + remainder, where p is an 
integer, and remainder = 2 or 4. If the remainder is 4, the 
network topology may be considered a product of p 6"'- 
topologies and one 4'-topology (6"'x6"'x .... x6"'(p times) 

x4'). Similarly, if the remainder is 2, the 2 may be 
combined with one of the 6"',s to form an 8", resulting, 
for example, in the superposition of p-1 6"'-topologies 
and one S"-topology. The order of 8 in the series is 
important, since each different ordering yields a 
different network topology for the N-node network (see 
the N=14 cases in Fig. 13). As a final example, we 
consider the case of N=20 network, and enumerate the 
various network topologies possible: 6111x61''x8", 

lO"'xlO', 8"'x12", 12"'x8", lO"'x10", 14"'x6", 14"'x6', 
6"'x14", 16"'x4', 20", etc. Note that the primed (Fig. 10 
type) and the double-primed (Fig. 11 type) always occur 
on the extreme right. We close the discussion above 
with the comment that more network topologies are 
permissible than have been considered so far. For 
example, basic series generation in Fig. 12 can be 
generalized to a superposition of N"' and a ring 
containing q chords (q20) (see Fig. 14); for q>O, we 

6111x6111x~l, 6111x8111x611, 8111x6111x611, ~lllx6111x61, 8111x8tltx41, 

Fig. 14 Ring with two chords 

denote the ensuing network topology by N I q , .  Classifying 
it as a basic topology, it may be combined with the 
previously considered basic topologies to obtain more 
hybrid topologies. 

Fig. 15 N" = 9 topology 

Hitherto, the discussion has been confined to N even. 
When N is odd, it implies that the graph has one more 
node and two more links than the graph for N- 1 (even) 
nodes (see Eqs. (6a-b)). The transformation to the N odd 
case from the N- 1 even case can be made by inserting a 
node on one of the links of the N-1 (even) topology, and 
connecting that node to an existing node chosen such 
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that the drawn link does not intersect with any existing 
link. The degree of the existing node changes to 4. See 
Fig. 15 for an illustration of one of the ways of 
obtaining N=9 topology from an existing N=8 topology. 

5. Summary 

We have presented algorithms for finding the shortest 
set of K-disjoint paths between a given pair of vertices in 
a network-graph. These algorithms are easily 
implementable for use in the design of survivable 
networks. In this paper, we have considered a model 
which allows for the division of traffic between a given 
pair of nodes in the network over more than two disjoint 
paths such that by suitable capacity allocation on the 
links the network becomes restorable 100%. We have 
shown that sending traffic over more than two disjoint 
paths can become economical and efficient in digital- 
crossconnect (DCS)-based networks. This approach of 
sending traffic over more than two paths in the design of 
survivable networks appears not to have been considered 
before. In addition, in this paper we have considered a 
methodology for generating network topologies that 
permit K>2 disjoint paths, and have illustrated it for the 
K=3 case. Knowledge of such topologies permits a 
network designer to design the links (or facility layout) 
for a survivable (K-connected) network, starting from 
the location of nodes. 
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APPENDIX A 

Modified Dijkstra Algorithm for Shortest Path from 
A to Z 

The algorithm given below is a slight variant of the 
original Dijkstra algorithm [3,4]. It is different (in Step 3 
below) in that it scans all the neighbors of the vertex 
selected (or "permanently" labeled) in Step 2. 

Let d(i) denote the distance of vertex i from starting 
vertex A. Let P(i) denote its predecessor. 

1. Start with 
d(A)=O, d(i)=l(A,i), if i E r A ,  

= 00, otherwise. 
(ri I set of first neighbor vertices of vertex i, 
l(ij) = length of arc from vertex i to vertex j)  

P(i)=A V i E TA. 
Set S = r A  

2. Findj E such that d(j)=min d(i), i E S .  
Set S=S -U> 
If j = Z (the terminal vertex), END; 
otherwise, go to 3. 

3. V i E rj, if d(j)+l(j,i) < d(i), set 
d(i)=d(i)+l(j,i), P(i)=j and S = S U {i}; 
go to 2. 

After initialized in step 1, the algorithm alternates 
between Steps 2 and 3. In each iteration, a vertex with 
least pathlength is selected from the set: S .  The 
algorithm searches by making one move at a time, and 
terminates when the vertex selected from the set S is Z. 

In the original Dijkstra algorithm, when a vertex with 
the least path length is selected from the list of 
tentatively labeled vertices, the selected vertex is said to 
have been labeled "permanently", i.e, the shortest path 
length to that selected vertex from the given origin (the 
source vertex A) has been found. No further scanning 
from any other vertex in the graph can update the label 
of this vertex. In our application, because of the 
presence of negative arcs in the modified graph (see 
Step 3 of Section 3. l), rescanning can update the label of 
the previously selected (or "permanently" labeled) 
vertex. The algorithm given above permits such 
rescanning. 
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